研究論文
高熱伝導放熱シートHEATEX® 絶縁タイプの開発..1
向 史博
銀ナノ粒子を用いた接合材料FlowMetal®の無垢Cu基板との接合信頼性の検討..........................5
渡辺 智文
乾式複合CVTベルトについて - 高荷重・高効率化 - ...9
土井 育人
Hybrid RIB ACE™ - 高水環境における高伝達仕様の開発－ ...14
真鍋 友哉
書き心地シートの開発 ..20
鍼田 稔

技術資料
難燃耐熱コンベヤベルトの開発 ..26
尻池 寛之

特許・実用新案登録一覧（2016年10月〜2017年9月）..29

新製品紹介
固線ベルト用張力計 LASHINGBITE®（ラッシングバイ）の紹介47
環境モニタリングに貢献する異物検査ツール「BANDO DEC-20™」の紹介..........................48

TOPICS（2017年1月〜2017年12月）...49
CONTENTS

REPORTS

- **Development of Thermal Conductive Sheet HEATEX® Insulation Type**
 Fumihiro MUKAI
 1

- **Reliability of Silver Sinter Die-attach Material, FlowMetal®, on Bare Copper Substrate**
 Tomofumi WATANABE
 5

- **About the Dry-type Hybrid CVT Belt – Realization of Higher Torque Capacity and Higher Efficiency –**
 Ikuhito DOI
 9

- **Hybrid RIB ACE™ – Development of High Transmission Performance at Wet Condition –**
 Yuya SHINDO
 14

- **Development of Easy Writability Sheet**
 Yutaka KAMADA
 20

TECHNICAL LETTER

- **Development of Flame and Heat Resistant Conveyor Belts**
 Hiroyuki SHIRIIKE
 26

PATENTS

- **(2016.10～2017.9)**

NEW PRODUCTS

- **(2017.1～2017.12)**

TOPICS
研究論文

高熱伝導放熱シートHEATEX® 絶縁タイプの開発

Development of Thermal Conductive Sheet HEATEX® Insulation Type

向 史博
Fumihiro MUKAI

Abstract

In late years, with a technological advance and downsizing of the electronic equipment, the calorific value of electronic parts increases remarkably. It is necessary to tell cooling machine such as heat sinks, and to radiate heat to be connected in the generated heat spoiling the reliability as the movement instability of electronic parts that is the apparatus.

Thermal conductive sheet is a heat transfer material used in form to intervene between heat place and cooling unit. We oriented filler having shape anisotropy perpendicularly with the thickness direction of the seat and controlled it, and we applied to thermal conductive sheet. As past result, we developed an insulation type using boron nitride.

Keywords：Thermal conductive sheet; Insulation; Vertically aligned; Boron nitride; HEATEX®

1. 開発の背景

近年、電子機器の高性能化や小型化に伴い、電子部品の発熱量が著しく増大している。発生した熱は、電子部品の動作不安定を含む機器としての信頼性を損なうことに繋がるため、ヒートシンクなどの冷却器へ伝えて放熱する必要がある。

放熱シートは、発熱源と冷却器の間に介在する形で使用される伝熱材であり、TIM（Thermal Interface Material）と呼ばれる放熱材料の一種である。発熱源や冷却器の表面には、少なくとも微細な凹凸が存在する。そのため、これらを直接組み付けると接触界面に断熱効果のある空気層を介在させることになり、伝熱が大きく悪化される。TIMの介在は、発熱源ならびに冷却器の表面凹凸への選択により空気層の形成を抑える。接触界面の熱抵抗を下げて伝熱を効率化する動きをもつ。ただし、TIMの介在は熱の移動距離を長くするといった伝熱の損失因子にもなるため、TIM製品自体の伝熱損失を向上させることが極めて重要となる。

我々は、形状異方位性を有するフィラーをマイクロスゴムシート中でシートの面に対して垂直に配向制御する技術を放熱シートに適用し、シートの厚み方向が熱の移動方向の熱伝導率を飛躍的に向上させた放熱シート（商標：HEATEX®）の開発に取り組んでいる。これまでの成果として、厚み方に優れた熱伝導率を有するカーボンファイバーをシートの面に対して垂直配向させた放熱シートを開発した。本報では、垂直配向制御技術の更なる展開として、電気絶縁性を有する鳞片状粒子である六方晶窒化ホウ素（h-BN）を熱伝導フィラーとして用いたHEATEX®絶縁タイプに関する開発事例を述べる。

2. 形状異方位性を有するフィラーの垂直配向制御技術の概要と特徴

2-1. 放熱シートの課題

TIMにはいくつかの製品分類があり、用途で使い分けが成されている。実際用いる際には、どのような特性・使い勝手を重視するか選択し、選択することが必要となる。

TIMに求められる特性は、熱をより効率的に伝達することができる。具体的には、以下の要求が挙げられる。

・材料自体が熱を伝達しやすい（TIM自体の熱伝導率が高い）
・熱の移動距離が短い（TIMの厚みが薄い）

接着材に良い接着性と、接触界面の伝熱障害を抑えられる（接合面での熱抵抗が低い）

放熱材料の熱特性は、熱抵抗として評価される。熱抵抗は、低いほど伝熱の障害因子が少ない（優れている）ことを示し、Figure 1 で示すようにTIM端末の熱抵抗と相手材との接触面の熱抵抗の差で表される。

放熱グリースなどの液状TIMは、オイルや変性ポリマーなどの油性に高熱伝導性を有する無機フィラーを充填したものである。波状であるが故に相手材の凹凸
に良くなじみ、接触界面の熱抵抗を低減することが可能である。加えて、薄層にすることが容易であり、熱の移動距離を短くしやすいため、発熱箇所冷却に伴う相材の寸法収縮による、塩素成分が塩素内部から混入して接触熱抵抗が増加する（ポンプアップ）といった経時安定性に関する課題を解消できる。

これに対し、放熱シートなどのシート状TIMは、液状TIMと同様に高熱伝導フィラーを充填したポリマーコンパウンドを用いるが、ポリマーを架橋により緊密化させ、フィラーとベクタリーをもとにも束縛するという特徴上の違いを持つ。ポリマーは網状化されることにより相手材の熱収縮に対する経時安定性に優れ、シート状のため取扱い易い作業性も良い。反面、ポリマーを架橋転化させたことに起因し、流動性を有する液状TIMに比べて、相手材への追従性に劣り接触熱抵抗が高い。また、放熱グリースと比べて厚膜で使用されるため、グリース同等の熱抵抗値を損う場合、熱伝導率の向上が不見にならない。

熱特性のみを比較した場合、放熱シートは放熱グリースと比べて長期信頼性・作業性能に劣るが、初期の実力が低い傾向にあると言える。しかし、フィラーを架橋ポリマーで拘束して任意の構造で保持できるため、複合材料として構造設計の自由度が高い。特に熱伝導率の向上に対しては、液状TIMでは実現が難しい設計を実装することが可能となる。その一例として、形状異方性を有する伝熱フィラーの垂直配向構造の適用が挙げられる。以下で高熱伝導率化の一般的な処方を掲げ、当技術の有用性について述べる。

2-2 高熱伝導率化処方

液状・シート状に限らず、TIMの熱伝導率は、充填した高熱伝導フィラーの量に依存する。フィラー充填複合材料の熱伝導率については、様々な理論式が提案されている。一つとして、Bruggemanの式(1)を示す。

\[
1 - \text{VF} = \frac{1 - \xi \lambda_c}{\lambda_f + 1 - \xi \lambda_c}
\]

\[
\text{VF} = \text{フィラーの体積率分率を示し、}\lambda, \lambda_c, \xi \text{はそれぞれフィラー、マトリックス樹脂、複合材料の熱伝導率を示す。Figure 2} \text{に示した、(1)式より求めた複合材料の熱伝導率とフィラー体積分率の関係を示す。マトリックス樹脂の熱伝導率を0.2W/mKとし、熱伝導率の異なる3種のフィラーを用いた際の理論値をプロットした。}

当然ではあるが、\lambda \leq 1W/mKの場合は\lambda_cは、充填量を高くしても低く推移する。TIMとしての必要機能を満たすためには、マトリックス樹脂と比べて十分に高い熱伝導率を有するフィラーを用いる必要がある。\lambda \geq 300W/mKの場合、\lambda_cはフィラーの体積分率（充填率）に強く依存し、体積分率が0.6を超えたあたりで急激に増加する。\lambda_cの急増は、フィラーの最密充填構造化とそれに伴うフィラー同士の相互作用（接触による伝熱パスの形成）の増加を意味する。また、仮に\lambda \geq 300W/mKのフィラーを用いても、\lambda_cは急増する関数が\lambda \geq 300W/mKの場合は同様であり、複合材料の高熱伝導率発現が容易でないことが期待される。

伝熱フィラーの充填量ηPに対する、一般にパッキン

\[\text{シート状} \text{に限らず、TIMの熱伝導率は、充填した高熱伝導フィラーの量に依存する。フィラー充填複合材料の熱伝導率については、様々な理論式が提案されている。一つとして、Bruggemanの式} \text{を} \text{示す。}

\[1 - \text{VF} = \frac{1 - \xi \lambda_c}{\lambda_f + 1 - \xi \lambda_c}
\]

\[\text{VF} = \text{フィラーの体積率分率を示し、}\lambda, \lambda_c, \xi \text{はそれぞれフィラー、マトリックス樹脂、複合材料の熱伝導率を示す。Figure 2} \text{に示した、(1)式より求めた複合材料の熱伝導率とフィラー体積分率の関係を示す。マトリックス樹脂の熱伝導率を0.2W/mKとし、熱伝導率の異なる3種のフィラーを用いた際の理論値をプロットした。}

来の信頼性や経時安定性が損なわれるだけでなく、相手材への追従性をさらに悪化させる懸念がある。本報では、フィラーの最密充填を用い、熱伝導度を最大値に活用することで高熟伝導度を図る手法について検討した結果を示す。

2-3. 高いとされるフィラー充填構造と用いた伝熱フィラー
形状異方性を有する長軸方向に高い熟伝導度を有するフィラーが、放熱シートの厚み方向に垂直配向した充填構造を試す。当構造の実現により、シートの厚み方向に既存の伝熱ケーブルを形成させ、フィラーの熱伝導度を最大値に発揮し、より低いフィラー体積分率での高熟伝導度実現を目標とした。

形状異方性を有する伝熱フィラーとして、攪拌状で板厚方向に150〜250 W/m・Kと高い熟伝導度を有するh-BNを用いた。Figure 3にSEM写真（HITACHI S4800にて撮影）ならびに板厚方向・厚み方向の熟伝導度を示す。

ガラス繊維復合には、熟伝導性・絶縁能に優れるシリコンゴム（熟伝導度0.2 W/m・K）を使用。h-BNも絶縁性に優れる無機フィラーであり、作製されるシートも高い絶縁性を示すことが期待できる。

3. h-BN垂直配向制御装置の適用例と効果

3-1. h-BN垂直配向シートの熟伝導度

上記構想のもと作り込みを行ったh-BN垂直配向シートの断面SEM写真をFigure 4に示す。Figure 4の縦方向がシートの厚み方向を示しており、この方向に沿った

3-2. h-BN垂直配向シート熱抵抗度の印加圧力依存性

h-BN垂直配向制御装置の適用により、伝熱フィラーの最密充填を要らず、高熟伝導度の発現が可能となった。続いて、熱接続抵抗について検討を進める。

Figure 6に測定時の印加圧力を変化させた際の熟抵抗度のシート厚み依存性を示す。
Table 1 Specification of HEATEX® insulation type

<table>
<thead>
<tr>
<th>Unit</th>
<th>HEATEX® Insulation Type</th>
<th>TS106 (Certificate)</th>
<th>TS102 (Certified)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness</td>
<td>mm</td>
<td>0.3, 0.3, 1.0</td>
<td>0.3, 0.5, 1.0</td>
</tr>
<tr>
<td>Thermal Conductivity</td>
<td>W/mK</td>
<td>9.5</td>
<td>7-10</td>
</tr>
<tr>
<td>Density</td>
<td>kg/m³</td>
<td>55</td>
<td>70</td>
</tr>
<tr>
<td>Flammability</td>
<td>V-0</td>
<td>>20</td>
<td>>20</td>
</tr>
<tr>
<td>Electrical Breakdown</td>
<td>kV/mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume Resistivity</td>
<td>Ω·cm</td>
<td>>10¹²</td>
<td></td>
</tr>
<tr>
<td>Flammability (UL94)</td>
<td>—</td>
<td>UL File No. E961346</td>
<td>V-0</td>
</tr>
</tbody>
</table>

印加圧力の増加に伴い、接触熱抵抗（直接近似の切片）が低減する。これは印加圧力の増加で、放熱シートと相手材との接触面積がなるときに起因している。当結果から、0.3MPa超の圧力下での実装・使用が当シートの特性を発現する上で望ましいことが示唆される。また、各圧力水準でのシートの熱伝導率（直線近似の傾きと相関）に変化が見られないことから、1MPaの圧力下においても垂直配向構造が維持され、安定した実力を示すことが確認された。

また、実際の実装環境においては、常に相手材の収縮・膨張が発生する。波長TIMにおいてはボンプアウトの要因となる懸念事項であるが、今回開発したシートでは、耐熱衝撃等相手材の綺麗度を変化に伴う熱伝導率の変化が確認されている。むしろ相手材と接触面積を増やす良化因子として働き、初期の熱抵抗度から良化する傾向が確認されている。当現象による接触熱抵抗低減については、相手材の寸法変更や形状に依存するため、実機評価にて効果確認を行うことが望ましい。

4. おわりに

以上の、形状異方性を有する伝熱フィラーをシートの厚み方向に配向させる技術ならびにそれを活用したh-BN垂直配向シートの熱特性について述べた。開発されたHEATEX®絶縁タイプは、TIMとして必要とされる熱抵抗の低減を図るだけでなく、架橋ゴムをマトリックス樹脂としているため、耐熱衝撃性や耐熱性といった長期信頼性にも優れている。また、最密充填に至ることなく高熱伝導率の発現が可能であるため、ゴムの特性を強化することはでき、絶縁耐圧や柔軟性などでも優れた値を示す。当製品の代表特性をTable 1に示す。今後更なる対策が必要となる電子機器の放熱設計において、HEATEX®絶縁タイプが解決手段の一つとして活用されることを期待する。

References

向 史博
Fumihiro MUKAI
2007年 入社
R&Dセンター
Reliability of Silver Sinter Die-attach Material, FlowMetal®, on Bare Copper Substrate

Tomofumi WATANABE

Abstract
The higher operating temperature of power semiconductor devices, the higher thermostability and thermal conductivity are required for die-attach materials. Silver sinter materials are the most promising die-attach material for SiC and GaN devices in high temperature operation. Using newly developed silver nanoparticle paste, FlowMetal®, semiconductor chips could be jointed bare copper substrates by pressureless sintering in a nitrogen atmosphere. Sintered silver layers by using the silver nanoparticle paste showed a high thermostability in heat cycle test.

Keywords: Power device; Silver nanoparticle; Thermostability; Jointing material; Sintering

1. 極 講

SiC(Silicon Carbide)やGaN(Gallium Nitride)などの化合物系半導体の開発が進み、既存のシリコン半導体素子よりも使用温度は高く傾向にある。一般的に化合物系半導体素子が使用される環境は200℃以上となる可能性があると言われている。そこで、接合材料に要求される代表的な品質として耐熱温度が高いことや熱伝導率が高いことが挙げられる。これまでの一般的な銀系材料は金属の線膨張係数を接合に利用するために、耐熱温度と材料の融点が比例関係にあるが、接合温度も上昇してしまうデメリットがある。

そこで、ナノ粒子の導入である低温焼結を利用した接合材料が提案されており、研究が進められている2)。金属ナノ粒子はサイズ効果により、ナノメートルサイズまで粒径が小さくなると室温程度まで融点が低下する。そして粒子間の接着・焼結が進むことによって融点が上昇することは一般的に知られている2)。この金属ナノ粒子は熟伝導を用いることで接合温度は低く、かつ焼結後のバルクの融点になるため耐熱温度を上げることが可能な接合材料となると考えられる。また、金属ナノ粒子、特に銀ナノ粒子を用いるとバルクの熱伝導率が420W/mKと非常に高いため、低熱抵抗化のメリットもある。

我々はナノ粒子や分散層、溶媒の配合設計を行うことによって200℃での耐熱信頼性に向けた銀ナノ粒子接合材料をFlowMetal®シリーズのラインナップのひとつとして開発してきた。その結果、低圧力さらには無加圧の接合で下限温度−40℃から上限温度200℃の耐熱サイクル試験の条件下においても1000サイクル後にボイドと接合層に変化が見られなかった3)。しかし、これらの報告は全てに歩きが均等な基板表面に接合した結果であった。実際のデバイスにおいて、基板表面に均等に処理が必要となるとコストアップに繋がってしまうため、均質割への直接接合が求められている。そこで我々は我々は無加圧に対して加熱を接合させるために銀ナノ粒子自体の設計を検討し直した。本報告では、我々が開発した銀ナノ粒子接合材料が無加圧接合条件下で均質割基板に接合でき、下限温度−65℃から上限温度150℃のヒートサイクル試験において耐熱信頼性が得られたことを述べる。

2. 実 験

2.1 銀ナノ粒子接合材料
我々が合成した銀ナノ粒子の粒径は約20-100nmであり、形状は主に球形であった。この銀ナノ粒子を用いて、接合材料となるベーストを調整した。

2.2 無加圧接合試験サンプル作製
接合部材として5mm角または7mm角、厚み0.3mm
のSiチップ（接合面は金/ニッケルをスパッタリング）と無酸素鋼基板（面積：20×23mm、厚み：1mm）を用いた。鋼基板は表面の酸化膜の影響をできるだけ取り除くことを目的として、希硫酸にて超音波洗浄を行った。まず、銀ナノ粒子ベーストを鋼基板上に、開口部が7.5mm角のメタルマスクを用いて印刷し、その後印刷した銀ナノ粒子ベーストの上にSiチップを0.2MPaの荷重でマウントした。次にチップをマウントしたサンプルを室温の炉に入れた後、鋼基板の酸化防止剤を設けた、窒素を流すことで酸素濃度を500ppm以下にした。その後室温から約30分で最大温度となる250℃まで昇温させ、30分間保持することで焼成を行った。焼成はチップに荷重をかけず無加圧で行った。焼成後は150℃以下になるまで自然冷却し、銀ナノ粒子ベーストにて焼結されたサンプルを得た。接合サンプルの構成図をFigure 1に示す。

2.3 ヒートサイクル試験前後における接合層の評価
従来品と本報告にて新たに調整した銀ナノ粒子ベーストを用いて、5mm角のSiチップを用いたFigure 1の接合サンプルをそれぞれ作製した。各接合サンプルの接合強度はロードセルの上限荷重が980Nのボンディングテスタにて測定し、比較を行った。以下の実験は、新たに調整した銀ナノ粒子ベーストにて実験を行った。

7mm角の接合サンプルのボイドや剥離の様子を超音波探傷（Scanning Acoustic Tomography：SAT）にて測定した。耐熱信頼性をヒートサイクル試験にて評価した。試験条件は、焼結したサンプルをそのままの状態にて、下限温度-55℃、上限温度150℃、各温度での保持時間15分、昇温・降温時間はそれぞれ約3分で一定回数行い、試験のサイクル数増加によって接合部のボイド率の変化を測定した。また、初期と1000サイクル後のサンプルを研磨によって断面出しを行い、加速電圧20kVでSEM（Scanning Electron Microscope）観察し、クラックの進展状態を確認・評価した。

3.結果
3.1 従来品との接合強度の比較
従来品と本報告の接合材ベーストを用いて5mm角チップにて窒素圧縮気の同条件下で焼結したサンプルの接合強度を測定した結果をFigure 2に示す。従来品は10MPa程度で鋼基板界面に近い部分で接合層の剥落が見られたのに対して、本報告のベーストでは測定上限となる40MPaを超えても焼結しなかった。Figure 3にSAT像を示す。従来品は剥離もしくはボイドが発生している様子が見られたのに対し、本報告の(a)ではボイドや剥離はほとんど見られなかった。Figure 4に示す従来品の断面SEM像を見ると剥離は基板界面付近で生じており、接合層には焼結した銀粒子間の

![Figure 1](image1.png)

Figure 1 Construction of the test piece.

![Figure 2](image2.png)

Figure 2 Comparison of shear strength.

![Figure 3](image3.png)

(a) This work (b) Previous work

Figure 3 Comparison of SAT image of sintered Ag layers.

![Figure 4](image4.png)

Figure 4 Cross-sectional SEM image of the sintered Ag layer in previous work.
空隙が多数見られた。従来品の銀接合層の緻密度が低いことがあるが、銀粒子と鋼の接合ができないことと接合強度の低下に寄与していると考えられる。鋼基板は希釈酸にて洗浄しているが、除去しきれなかった酸化膜、もしくは再酸化によるわずかな酸化膜の影響が微粒子の接合原理である粒子の焼結による接合体界面での元素拡散を阻害していると考えた。そこで本報告で新たに調整した接合材ペーストは酸化膜を除去しつつ粒子は焼結させるような有機成分を配合させた。それによって銀粒子と鋼表面の元素拡散が促され、接合強度が飛躍的に向上したと言える。

3.2 無加圧接合での200℃ヒートサイクル試験
次に7mm角チップを鋼基板へ無加圧接合したサンプルに対して、上限温度150℃のヒートサイクル試験を実施した。前述に従ってのSAT像の変化をFigure 5に示す。7mm角チップでも5mm角のチップに比べて初期の段階でポアが多く発生することはなかった。また、−55/150℃のヒートサイクル試験1000サイクル後もポアの増加や剥離が進行している様子はSAT像では見られなかった。ヒートサイクル試験前後の断面SEMを観察した結果をFigure 6に示した。Figure 4の従来品に比べて初期に鋼基板界面やチップ界面での銀接合層が剥離している様子は見られず、Figure 2で接合強度が高かった結果をとも一致する結果となった。Figure 6(c)から焼結した後の粒子間の空隙が少なく、緻密度が非常に高いことがわかる。また、酸素濃度が500ppm以下という有機成分が燃焼しない条件では粒子に付着している分散剤が外れ、ナノ粒子同士が焼結していることが確認できた。有機成分の排気を促す効果があるとされる外部からの加圧を行っていない無加圧の焼結条件においてもナノ粒子の配合設計によって褐変化気流での焼結は可能であることが示唆された。
55/150℃のヒートサイクル試験1000サイクル後も焼結した銀接合層自体に変化は無く、緻密な状態を保っていた(Figure 6(d)・(e)さらに(f)からもチップ界面や鋼基板界面にクラックが進展している様子は見られなかった。この結果からSiチップと鋼基板という組織組成分差が大きいため組合せの部材構成でも銀の接合層は高い信頼性を有していることがわかった。
これまでの我々の知見から、ヒートサイクルの
熱応力によるクラックは端部の接合層とチップ界面付近から入り始め、その後クラックは焼結して繋がった粒子同士の細くて密度の低い部分から進展していくと考えられる。Figure 6 (b)をみると、初期状態でチップ端部界面にわずかにクラックが入り込んでいるが、Figure 6 (b)ではそのクラックの進展は見られない。銀粒子が焼結した接合層の空隙が低減し、密着になったため、ヒートサイクルによる熱応力にチップ界面で発生したクラックが耐えることができたと考えられる。本報告では上限温度が150℃のヒートサイクル試験を実施したが、さらに高温にて熱応力が大きくなる条件での信頼性を確認、評価していく必要がある。

4. 結 言

我々が無麻鋼を直接接合するために新たに開発した銀ナノ粒子を用いた接合材料によって、従来検討品ではなじめなかった鋼への無加圧接合でも高い接合強度が得られた。7 mm角のSiチップと鋼基板を無加圧接合すると、下限温度-5℃から上限温度150℃のヒートサイクル試験において1000サイクル後も、接合層に大きな劣化は見られず良好な接合状態を維持していた。

したがって、無加圧接合条件においても銀ナノ粒子接合材料が優れた耐熱信頼性を示すことを明らかにした。今後、この銀ナノ粒子を用いた接合技術を高機能作する化合物半導体体系パワーデバイスへ適用するためには、上限温度が175℃以上でのヒートサイクル条件でも耐熱信頼性が得られる事を実証する予定である。

本報は下記報告に補足修正を加えたものである。

[Mate2017 第23回エレクトロニクスにおけるマイクロ接合・実装技術シンポジウム論文集, Vol. 23(2017), pp. 117-120。]

References

4) 渡辺智文, 武居正史, "銀ナノ粒子を用いた接合材料による200℃信頼性の確立", Mate2016 第22回エレクトロニクスにおけるマイクロ接合・実装技術シンポジウム論文集, 22, 117-120(2016)
About the Dry-type Hybrid CVT Belt
- Realization of Higher Torque Capacity and Higher Efficiency -

Ikuhito DOI

Abstract
Unlike Wet-type Metal CVT Belt, oil is not required for Dry-type Hybrid CVT Belt and it promises better transmission efficiency due to its light weight. The drawback, however, is it has low load capacity. This paper serves as an introduction to the development of the new Dry-type Hybrid CVT Belt in raising its load capacity and its transmission efficiency.

Keywords: Power transmission; Continuously variable transmission; Dry-type hybrid CVT

1. 論 言

低く、搭載可能な排気量としても650ccから800ccクラスが主流で広く使われている。そこで従来の乾式複合CVTベルトに対して、負荷容量の向上とさらなる高効率伝動を可能とする新型の乾式複合CVTベルトの開発を計画した。

2. 実験

2.1. 目標水準と実験把握

負荷容量の目標値としては、異なります。乾式複合CVTベルトに対して、1.8倍の負荷に対応可能なベルトを開発することとした。現行品の実力を把握するため、800ccクラスまで対応可能な新製品の乾式複合CVTベルトにおいて1.8倍の負荷を与えた状態で耐久性評価、特性評価を実施した結果をTable 1に示す。低回転で高いトルクがかかる車両の発進時を想定した減速レシオ耐久では、1.8倍の負荷をかけた状態でパルトスリップが発生し試験終了となった。高回転で低いトルクがかかる車両の高速走行時を想定した増速レシオ耐久では早期に破損することはなかったが、目標寿命時間まで到達することはできなかった。伝達効率に関してはレシオ、トルクなどを変化して確認した結果98%以上となった。

目標とした負荷容量を実現するには、高いトルクを伝えるために必要な推力に耐えうるブロックと、高速で走行した際にベルト発熱を抑制できるような設計が必要となる。それらを実現することができれば、より
Table 1 Test results at 1.8 times load.

<table>
<thead>
<tr>
<th>試験項目</th>
<th>結果概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>減速レスオ耐久</td>
<td>1.8 倍トルク伝達不可</td>
</tr>
<tr>
<td>増速レスオ耐久</td>
<td>目標寿命時間を1とした場合、0.7の時点でベルト破損発生</td>
</tr>
<tr>
<td>伝動効率</td>
<td>9.8％以上</td>
</tr>
</tbody>
</table>

ロスの少ないベルトとなり高発率化対応も可能となる。以上のことより、ブロックの剛性向上のためのブロック形状と、ベルト発熱を低減するための張力帯形状に関して、研究開発を実施した。

2.2. ブロック剛性向上検討

2.2.1. ブロックにかかる力

乾式複合CVTベルトでの動力伝達においてブロック、張力帯が果たす役割としては、推力を受けてながらブーリーから受けたトルクをせん断力として張力帯に伝え、もう一方のブーリーに動力を伝達することである。その際、ブロックはFigure 2のように、ブーリーから受けと垂直力F_N、ベルト張力によって発生する半径力F_T、トルクを伝えるための伝達力F_3の3力がかかっている。

これら3分力のうち、伝達力F_3と半径力F_Tの合力方向にブロックの上ビームがFigure 3のようなイメージで変形し、Figure 4のようにブロック上ビームの端元に最大応力が発生する。

ブロックが変形するとFigure 5のようにブーリーとの接触状態が悪化し、ベルトスリップや心線が湾曲するなどによる心線切断、上ビーム根本応力発生によるブロック破損といった様々な故障が発生する。負荷容量を向上させるにはブロックの変形を抑制し、上ビーム根本に発生する最大応力を低減する必要がある。

ブロックに高トルク条件で破損せず伝動することが要求される一方、高速走行時の速い心線を軽減するためには、軽量であることが必要であり、軽くて強いブロック形状を追求する必要がある。ブロック中にはアルミニウム補強材が埋設され、ブロックの強度はこの補強材により保証されている。したがって、補強材の形状設計が鍵でブロックを得るために重要となる。

2.2.2. ブロック補強材形状の改良

Figure 6にブロックの上ビームとベルトが走行するブーリー面との角度と上ビーム根本に発生する応力との関係を示す。

(a) は現行品の状態を示しており（ストレート形状）、上ビームとブーリー面との角度
α = 90° の関係となる。推力を受けていないビームが上方のモーメントを受けビーム根本に引張り応力が発生する。(b) のように上ビームとブーリー面の角度
α = 0° とすること上ビーム根本に発生する応力がゼロとなる（アーチ形状）。開発品は(c)のように上ビームとブーリー面の角度
α > 90° とすることで、上ビームに発生するモーメントが下方向となり、上ビーム根本に圧縮応力が発生させることができることが可能となる。これによりトルク方向に伝
達力F₁により発生する引張応力を、半径力F₂と垂直力F₃により発生する圧縮応力で相殺することができる。この解析結果を「UFO形状」とした。

実験結果であるストレート形状と、開発品であるUFO形状で、同一の負荷を与えた際の上ピーム垂直に発生する最大応力の解析結果をFigure 7に示す。ブーリに対する上ピームの角度を変更することで補強材最大応力を50％低減させることができた。

実験結果であるストレート形状と、開発品であるUFO形状で、同じレイアウト、軸荷重（推力）、ベルトストップ等に応じて伝達可能なトルクの測定結果をFigure 8に示す。ブーリに対しての上ピーム角度を変更することでブロックの変形を抑制され、開発品は現行品に対して伝達可能トルクが1.8倍の水準となっている。

Figure 9 Belt fault mechanism at speed increasing ratio

2.3. ベルト発熱低減形状の検討
2.3.1. 増速レシオ走行時のベルト故障
乾式複合CVTベルトの増速レシオ走行時における代表的な故障メカニズムをFigure 9に示す。增速レシオ走行時はベルト速度上昇にともない、屈曲の周波数も高くなる。このため、ベルトの特に張力帯の部分で発熱するとともに、ゴムが熱膨張し、ブロックと張力帯の摩擦部分の面圧が高まる。そのような状態で継続走行すると、上記した摩擦熱の促進で、ブロックと張力帯の摩擦部分でガタを生じ、最終的にブロック破損が発生する。従って、增速レシオ走行時の寿命を向上するには故障の起因となるベルト張力部の自発発熱と熱膨張の低減が必要となる。

2.3.2. 乾式複合CVTベルトにおける動力損失割合
Figure 10に乾式複合CVTベルトの增速レシオ走行時における動力損失の割合を示す。ベルトにより発生する動力損失の原因としては、ブリーキ詰まりに発生するベルト曲げによる損失、ブリーキからの推力を受ける際に発生する壁紙変形による損失、各ブリーキでの出入口に発生する出入口損失による損失、ベルト重量に起因する速度依存性のある損失、トルク伝達時に発生する張力、張力変形力に起因する弾性スリップ損失などをあげる。なお、ベルト曲げによる損失の占める割合が大きいことがわかる。

2.3.3. 張力帯形状の改良
增速レシオ走行時の寿命向上や、さらなる高効率化
2.3.4. 勘合接触部薄歯化によるベルト発熱低減効果

前述の通り、接触部の歯厚を薄歯化すると、ベルトの走行抵抗が低減し、ベルトの発熱も低減する。しかし、歯厚を薄歯化すると、ベルトの耐久性が低下するので、歯厚を最適に設定することが必要である。本研究では、歯厚を3〜1mmに設定し、その効果を検証した。図11に示す結果は、歯厚を3mmに設定した場合、発熱は約80%低減し、5mmに設定した場合、発熱は約50%低減することができる。図12に示す結果は、歯厚を3mmに設定した場合、発熱は約80%低減し、5mmに設定した場合、発熱は約50%低減することができる。

2.3.5. 勘合接触部薄歯化による伝達効率向上効果

歯厚を薄歯化すると、ベルトの伝達効率も向上する。図13に示す結果は、歯厚を3mmに設定した場合、伝達効率は約10%向上し、5mmに設定した場合、伝達効率は約15%向上することができる。

2.4. 耐久性の確認

2.4.1. ベルト形状

開発品は現行品に対して、歯厚を薄歯化すると、ベルトの耐久性が向上する。図14に示す結果は、歯厚を3mmに設定した場合、ベルトの膨張率は約50%低減し、5mmに設定した場合、ベルトの膨張率は約70%低減することができる。

2.4.2. 耐久性確認結果

現行品は、歯厚を3mmに設定した場合、ベルトの寿命は約4000時間と長であるが、開発品では、歯厚を1mmに設定した場合、ベルトの寿命は約6000時間と長い。

図15に示す結果は、歯厚を3mmに設定した場合、ベルトの寿命は約4000時間と長であるが、開発品では、歯厚を1mmに設定した場合、ベルトの寿命は約6000時間と長い。
クの変形が抑制されたことでブーリとベルトの接触状態が安定するとともに、張力帯部の巻きずれを抑えられ目標の耐久性が確保されたと考えられる。

増速レスオ耐久においては現行品が目標寿命ラインを1とした場合、0.7の時点で寿命となっていたのに対し、開発品は目標寿命ラインを大きく上回る結果となっ。ブロックと張力帯の摩擦接触厚を厚化することで、ベルトの自発進を低減することができ、張力帯の動的にゴム部のヘテリが抑えられ、十分な耐久性が確保されたと考えられる。

3. まと め

高负荷、高効率対応の新型乾式複合CVTベルトの開発を行い以下の結果が得られた。
(1) ブロックの中にインサートされている補強材の上ビームとブーリとの角度をθとするとすることで、上ビームで発生する応力を50％低減させることができ、現行比1.8倍の負荷条件においても十分な耐久性を確保することができた。
(2) ブロックと張力帯の摩擦接触部の厚みを薄型化することで走行時のベルト発熱を40％低減することができ、伝達効率の向上を実現するとともに、増速レスオ時の耐久性を確保することができた。

Reference
Hybrid RIB ACE™ – Development of High Transmission Performance at Wet Condition –

Yuya SHINDO

Abstract
In technology development for reducing fuel consumption of automobile engines, high transmission performance is required for automotive accessory drive belts at wet condition.

In this development, we improved the transmission performance of the conventional Hybrid RIB ACE™ at wet condition.

First, we investigated the material of fabric covering the transmission surface of Hybrid RIB ACE™. Next, we investigated the fabric with excellent in transmission performance and abrasion resistance in the belt state.

As a result, in order to improve the transmission performance at wet condition, it is necessary to include cotton in the material of the fabric, and by adjusting the surface coverage of the fabric it is possible to compatible with the transmission performance at the dry condition. In addition, abrasion resistance can be compatible with fabrics made by adding nylon or polyester to cotton.

By applying these technologies to automotive accessory drive belts, which will become even more severe in the future, it is possible to contribute to the progress of automotive engines.

Keywords: Automotive accessory drive belt ; Mold-type belt

1. 緒 言

近年の自動車エンジン開発において自動車メーカーの燃費競争は激しくなり、エンジンのハイブリッド化を初めとする様々な技術が投入されている。例えば、スズキ商のS-エネチャージに代表される「BASシステム（ベルト式自動システム）」やマツダ社の初期SKYACTIV技術の一つとしている「HCCI技術」などにおいては、機械駆動ベルト「当社製品名：リブリベルト」に対し過大負荷が掛かることを推定され、更に厳しい使用環境への対応が必要となっている。

このようなニーズに対し、近年培ってきた研究開発によりリブリベルトの技術を基にリブ表層を薄型で覆った「ハイブリッドリップエース」を開発し、2015年に格的に上市した。本製品は耐摩耗性や脱水時の異音耐性を改良した仕様となっているが、昨今の燃費向上技術の進化の過程において、エンジン回転変動や始動時トルクが増加しており、脱水時の伝達性能や異音耐性の更なる性能向上が求められている。よって、それらニーズに対応できるハイブリッドリップエースの開発を行った。

2. ハイブリッドリップエースについて

初めて、ハイブリッドリップエースの製造方法と特徴について説明する。従来のリブリベルトは、リブ層がゴム材料であり、ゴムを繊維で編絹することによりリブ形状を形成するに対し、ハイブリッドリップエースはFig.1に示すような断面構造となっており、リブ表層を薄型で覆う為、リブ形状が加工された外型に製品を押付けて作製する「モールド工法」で製造される。そのため、一般的にはリブ表層の布野は変形しない繊布ではなく、伸縮に優れる繊布で構成されることが多い。表層に配置した布野の特性はバルトの伝達性能に大きく影響することが、今回これを改良したハイブリッドリップエースを開発した。

Figure 1 Construction of Hybrid RIB ACE™
3. 従来型ハイブリッドリブニーズの問題点

本開発に取り組むにあたり、従来型ハイブリッドリブニーズの問題点を抽出し、それらを解消する手法を検討した。従来型ハイブリッドリブニーズは被水時のトルク伝達において、スリップ時の伝達トルク低下を緩和することをコンセプトとしており、伝達面の疲労を含む被水時の伝達面摩耗を低減させるためにペルトスリップに伴うエネルギー解放を低減し、異音の発生を抑制している。

しかしながら、昨今のエンジンでは補機負荷や負荷変動が大きく、従来に比べペルト張力変動が増大する傾向にある。その結果、スリップに至る前の伝達トルクが瞬間に上昇し、ペルトスリップに伴うエネルギー解放が大きくなることにより、異音が発生するケースが増加している。また、エンジンシステムのフリクションロス低減を目的とした低張力化に伴い、被水時に補機を駆動できない問題もあり、高負荷環境においてもスリップが発生しない、伝達性能の高いペルトが要求されている。

4. 布帛の親水性と摩擦力

従来型ハイブリッドリブニーズでは、上述した様にスリップ時に発生するエネルギーの低下を特に考えた設計をしており、リブ表面の布帛にナイロン繊維を使用し、その表面に疎水性のPTFE（フッ素系樹脂）被膜を施しているため、使用時の摩擦係数は小さくなっている。

被水時に摩擦係数が低下するケースの一つに、固体間の水膜形成が挙げられ、「ハイドロプレーニング現象」として一般に知られている。タイヤではトレッドパターンと呼ばれる溝を伝達面に施すことによって、水膜の形成を妨げスリップを低下する。自動車両用動力ベッドにおいても同様の効果を期待して従来のペルトではリブゴムの伝達面を研削することにより、疎水性や機能性材料を露出させ水膜の形成を防止している。

一方、被水時に摩擦係数が増加するケースとして「メニスカス現象」がある。一般に2つの固体間に水（もしくは液体）が介在する場合、水分子と固体界面の相互作用力によって固体間に液体架橋（メニスカス）が形成される。これが2枚のガラス板を滑らせた状態で貼り合わせると接着する事象で知られており、固体の親水性により液体架橋力（接着力）が変化する。この図の接着性を評価する手法として、接触角の測定がある。

5. 布帛の親水性と被水時の摩擦力評価

接触角の測定は一般的な固体表面であれば安定した測定が可能であるが、布帛などの繊維では毛細管現象による吸水作用で接触角が経時変化する。そのため、Table 1のサンプルについて浸水後から10秒間隔で60秒までの接触角を測定した。結果を図2に示す。

PTFE塗布ナイロン布帛において、接触角は140degを越えやすく特徴を示すとともに、時間経過に対する接触角の変化は小さくなっている。一方、極細ナイロン布帛（マイクロファイバー）や繊布帛では浸水後10秒後に接触角が0degとなった。また、ナイロン布帛及びポリエステル布帛はそれぞれの入間の傾向を示した。これらの結果において、ナイロン布帛と極細ナイロン布帛は同素材であるため、親水性は同一と考えられるが、接触角が0degになるまでの時間が後者が短いことから、布帛の繊維構成により吸水性に差があったと考えられる。

次に被水時の摩擦力を測定する、Table 1に示すサンプルを用いて、Figure 3に示す方法および条件に

<table>
<thead>
<tr>
<th>Table 1 Test samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample No.</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
</tbody>
</table>

Figure 2 Water contact angle of knits

Figure 3 Evaluation method of friction force by HEIDON friction tester

BANDO TECHNICAL REPORT No.22/2018
6. ベルトでの特性評価

6.1. ベルト伝達性能の評価

Table 2に示す試料を用いてベルトを作製し、Figure 5に示すレイアウトおよびTable 3に示す条件にて常温時および乾燥時の伝達性能評価を実施した。Table 2のサンプル名称はアルファベットが素材、数が繊維構造や素線構造を識別している。Figure 5に示すレイアウトにおいて、ブーリNo.1およびNo.2はモーターと繋がった動力源、ブーリNo.5はベルトに張力を与えるテンション輪、その他ブーリは従動輪となっており、ブーリNo.1およびNo.2を等速回転させ、その後ブーリNo.2のみを減速させることが強制的にスリップを発生させている。その時のスリップ率に対するブーリNo.2の軸トルクを計測した結果をFigure 6に示す。また、この観測においてDRY時およびWET時の最大トルクを把握しFigure 7に示す「伝達性能マップ」を作成した。
6.2. 布帛素材とベルトの伝達性能

Figure 7より、ナイロン布帛、繊布帛、繊×ナイロン布帛、繊×ポリエチル布帛において線を含む布帛（図中Group-1）はいずれも高いWET伝達トルクを示しており、ナイロン布帛（図中Group-2）の場合はそれらに対しWET伝達トルクは低くなる。

また、ナイロン布帛のサンプルN2 ～ N18は座細繊維であるが、WET伝達トルクへの効果は繊の効果と比較して小さく5.5で示した布帛単体での摩耗力測定結果と同様である。

6.3 線を含む布帛の特徴

Figure 7より、繊布帛、繊×ナイロン布帛、繊×ポリエチル布帛（Group-1）について、NC5/TC1/C1を比較すると素材構成が異なるにもかかわらずWET伝達トルクは同水準となっており、繊の含有率が一定水準以上の場合はWET伝達性能に対し素材構成は大きく影響しないと考えられる。

次に、Group-1のサンプルについて伝達面の布帛被覆率を測定した。布帛被覆率はFigure 8に示すように、マイクロスコープにてベルト伝達面を200倍で撮影し、画像解析ソフトを用いてカラー画像をグレースケール化した後にモード法を用いて布帛とゴムを2値画像化し測定した。布帛被覆率と伝達性能の関係をFigure 9に示す。

Figure 9より、布帛の被覆率低下に伴いDRY時伝達トルクが増加している事がある。これはリブ伝達面に内層のゴムが露出した事で摩耗損失が増加したためである。一方でWET時伝達トルクは、布帛の被覆率低下に伴い低下したが、被覆率30 ～ 90%の範囲では低下傾向を示さない。つまり綿を含む布帛の被覆率が30 ～ 90%ではWET伝達性能を低下させることなくDRY伝達性能を向上させることができる。また、ポリエチルと綿で構成されたサンプルの中で、TCSはFigure 7に示す市場の要求伝達性能を満足する事ができた。
6.4 布帛の耐摩耗性

ベルトの耐摩耗性を評価する為に、各素材から数サンプルを選定し、Figure10に示す試験レイアウトおよびTable 4に示す試験条件でベルトを走行させ、48hrs走行後のベルト重量低下を確認した。目標の耐摩耗性を100とした際の各サンプルの重量摩耗率をFigure11に示す。

布帛の材質組み合わせにおいて細单体との比較に

<table>
<thead>
<tr>
<th>Table 4 Layout Information and test condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulley No.</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>

Figure 9 The relationship between surface coverage and transmission performance

Figure 10 Test layout of Wear resistance

Figure 11 Test results of wear resistance
7. 結 言

一般的にベルト伝達面に布層を設けた伝動ベルトは、WET伝達性能を向上させる目的で布層の被覆率は100%を限って設計されているものが多く、DRY伝達性能との両立は困難と考えられていた。しかしながら布層の材質や構造、被覆率を調整することで、DRY時およびWET時の伝達性能を両立させ、更に耐摩耗性を向上させた新しいハイブリッドリプエースを開発することができた。

今後も引き続き、本開発で得られた基礎技術を基に更なる高負荷環境に適した製品の開発を行う予定である。

真鍋 友哉
Yuya SHINDO
2010年 入社
自動車部品事業部
Development of Easy Writability Sheet

Yutaka KAMADA

Abstract

Recently, Tablet devices are widely known and used. One of the input methods is by using touch-pen. However, many users are not satisfied with the feeling of the surface when writing letters because it is quite different from papers. In this development of feeling better surface for touch-pen input, we use special elastomer sheet as a surface. This sheet has a very good transparency, softness, and self-healing property. With these properties, the touch-pen get an appropriate slippery on the sheet and the sheet gets the adequate dent during the touch-pen input. This technology makes it possible to get better feeling than conventional products.

Keywords: writability; optical properties; dynamic friction coefficient

1. 緒 言

近年普及が著しいタブレット端末において、人力方法の1つにペン入力がある。しかし、ペン入力による書き心地は慣れ親しんだ「紙」への書き心地とは大きく異なり、閉口した経験をもつ人も多いであろう。このような状況において、タブレット端末用ペンシステムのグローバルリーダーである株式会社ワコム（世界シェア80%、国内シェア85.7%）は、タブレット端末の表面に機能性フィルムを積層する方法で紙への筆記と同水準の書き心地を求めているが、当社の光学用エラストマーシート（Free Crystal®）を適用することで画面の描画特性を維持しつつ、慣れ親しんだペンによる紙への書き心地を再現できる可能性が高まってきた。Free Crystal®は当社独自のシート形状により成形され、一般的なコンバーティング技術では困難な数μmの厚膜エラストマーシートの成形を可能としている。

一方、社会的背景に目を向け、総務省が2020年までに全国小中高等学校無線LAN「Wi-Fi」を整備する検討を始めたことや文部科学省において第3期教育振興基本計画の策定に向けた具体的なICT環境整備の目標（検討事項）に「教員が必要なときに、児童生徒一人一台の教育用コンピュータの整備」との記載があり、今後、文教庁のタブレット端末が大々的な市場を形成していくと予測される。

本稿ではワコム社製のペン（スタイラスペン、芯：POM（ポリアセタール樹脂））との組み合わせにおいてボールペンによる紙への筆記性を発現する“書き心地シート”を開発した。

本製品の構成をFigure 1に示す。保護フィルム／書き心地エラストマーシート／透明PET層／自己吸着層／保護フィルムの5層構造からなり、保護フィルムを剥がし、ペンタブレット導面に貼り付けて使用される。

表層に高透明性、柔軟性、自己修復性を有するFree Crystal®を適用することで、ペンによる適度な凹みとすぺリ性を発現させ、従来ない「書き心地」の良さを実現するものである。

Figure 1 Structure of easy writability sheet

2. 開発目標の設定

開発にあたっては、タブレット端末で絵画などを「描く」のではなく、文字や文章を「書く」時の「書き心地」を对象とし、紙とボールペンの組み合わせと同様な「書き心地」を目指した。書き心地は官能評価となり、人の好みに左右され1つのことが困難である。そこで、書き心地に関する代用特性を明確にするために評価技術の開発を行った。まずは社内
筆記時の条件
角度：50〜60°
筆記速度：10〜30mm/sec
筆記時の荷重：200g

Figure 2 The parameters which shows state of writing with the pencil

30名でモーター評価を行った結果、筆記時の条件はFigure 2に示すように、ペン角度50〜60°、筆記速度10〜30mm/sec、筆記時の荷重は約200gであることが

次に、鉛筆やボールペンで筆記する場合は、ガラス上に一枚の紙を置いて筆記するより、重ねた紙やデスクマットの上に紙を置いて筆記を行った方が書きやすいという経験からボールペンと重ねた紙との摩擦係数に加え、そのペン先の沈み込み量（凹み量）についても調査を行った。その結果をTable 3、Figure 3およびFigure 4に示す。ボールペン（ペン先の先丸直径1

凹み量（μm）

Table 1 Relation between the stack number of the copy paper and the coefficient of dynamic friction and the amount of dent

<table>
<thead>
<tr>
<th>コピー用紙の枚数</th>
<th>1枚</th>
<th>2枚</th>
<th>3枚</th>
<th>4枚</th>
<th>5枚</th>
<th>POM芯対AGガラス</th>
<th>POM芯対衝撃吸収クレート/PET</th>
</tr>
</thead>
<tbody>
<tr>
<td>動摩擦係数(〜)</td>
<td>0.16</td>
<td>0.19</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
<td>0.16</td>
<td>0.09</td>
</tr>
<tr>
<td>凹み量(μm)</td>
<td>33</td>
<td>61</td>
<td>83</td>
<td>97</td>
<td>105</td>
<td>2</td>
<td>15</td>
</tr>
</tbody>
</table>

Figure 3 Relation between the stack number of the copy paper and the coefficient of dynamic friction

Figure 4 Relation between the stack number of the copy paper and the amount of dent

3. 書き心地エラスマー層の最適化設計

3-1. 主剤の設計
書き心地エラスマー層に求められる基本特性としては、透明性、耐傷性、柔軟性、自己修復性、耐薬品性などが挙げられる。書き心地エラスマー層として

凹み量)は増大し、200g荷重時の動摩擦係数は0.16

一方、タブレット端末への筆記で用いられるPOM芯とAGガラス、および市販ウレタン製シートの組み合わせで同様の評価を行ったところ、動摩擦係数は低く、かつ凹み量も小さくなることが分かり、紙に書くような「書き心地」は再現できなかった。

そこで、本開発ではFigure 5に示すように、書き心地層の厚さを数百μmとすることによりペン入力時に適度な凹みを発現させ、さらにペンとの摩擦係数を制御することにより、適度な抵抗感を感じながらすべらせることを設計コンセプトとした。目標値としては、凹み量がボールペンとコピー用紙1枚から2枚の組み合わせと同水準の範囲であること、および動摩擦係数が0.16〜0.20とした。
Free Crystal® を適用することで光学特性、耐環境性については Table 2 に示すように目標値をクリアすることことができた。

さらに、実際の使い方を想定し、周辺部材（AC アダプタのケーブル、タブレットカバー、シリコン防水キーボード）との接触試験を行なった。試作品（配合：FC-W01）を貼ったタブレット（デモ機）上で AC アダプタのケーブル（黒色ケーブル、灰色ケーブル） を接触させた場合において、Figure 6 のような接触跡が発生した。試験後、3 時間経過させた後復元することなく、その形状は四角ではなく不規則であることが分かった。

接触部分に存在する化学物質を制限するために、IR 分析および熱分解 GC/MS 測定を行なった。接触跡部について IR 分析した結果を Figure 7 に示す。ケーブル接触部分において正常部分では検出されないエステル基由来のピーク（$C=O$基 1730cm$^{-1}$）が検出された。本ピークは黒色ケーブル、灰色ケーブルでも検出された。また、熱分解 GC/MS の測定結果については Figure 8 に示す。正常部では検出される DOP（フタル酸ビス(2-オクチルフェニル)）がケーブル接触部分から検出されることが分かった。一方、灰色ケーブルからも DOP が検出され、黒色ケーブルからは DPHP（フタル酸ジ・2-プロピルヘキシル）が検出された。以上の結果より、書き心地エラストマーカーにケーブル接触跡が発生した原因はケーブルに含有される可塑剤が書き心地エラストマーカー層に移行したことによるものと考えられる。

ケーブル接触痕の改良にはポリマー鎖中に官能基を導入し、分子間凝集力を高めることで可塑剤による膨潤を防ぐことが有効であると考える。そこで、試作品（配合：FC-W01）よりも凝集力の高いポリマー（配合：FC-W02）を用いた。2 色のケーブル（灰色、黒色）と、書き心地エラストマーカーとを室温で 3 日間接触させ、その後、書き心地エラストマーカーの表面状態を観察し確認した。その結果を Table 3 に示す。FC-W01 では灰色、黒色ケーブル接触後に書き心地エラストマーカー表面にケーブル接触痕が発生した。一方、FC-W02 ではケーブル接触痕は認められなかった。

以上のような結果より、分子間凝集力の高い FC-W02 を書き心地エラストマーカー層の主剂とした。
3-2. 潤滑剤の選定
POM芯と書心地エラストマーとの摩擦係数(μ)制御の方法の1つとして、潤滑剤を界面に介在させることが考えられる。潤滑剤の選定を行うにあたり、エラストマー層を構成する主剤との相溶性、およびその成形物の光学特性を確保することを基準として設計を進めた。各種変性潤滑剤を検討した結果をTable 4に示す。未変性やフェニール変性タイプの潤滑剤では主剤との相溶性が悪く主剤の分離することが分かった。一方、ポリエチル変性タイプについては相溶性、成形物の光学特性とも良好である結果が得られた。よって、潤滑剤としてはポリエチル変性タイプをベースとして摩擦係数制御の検討を行った。

3-3. 主剤、硬化剤、潤滑剤の配合比率の検討
書心地エラストマーニーの凝縮化設計において、主剤／硬化剤比（水準A、B、C）と潤滑剤の変量実験について書心地層厚50μmおよび200μmでの2水準で評価を行なった。主剤／硬化剤比の水準Aは凹き具合を満足する程度の上流、水準Bは下限

<table>
<thead>
<tr>
<th>表3 検査結果のACケーブル</th>
<th>FC-W01</th>
<th>FC-W02</th>
</tr>
</thead>
<tbody>
<tr>
<td>灰色ケーブルDOP (フタロ酸ビス(2-エタノールヒドラ)</td>
<td>×</td>
<td>○</td>
</tr>
<tr>
<td>接触跡あり</td>
<td>接触跡なし</td>
<td></td>
</tr>
<tr>
<td>黒色ケーブルDHP (フタロ酸ジ-2-プロピルヒドラ)</td>
<td>×</td>
<td>○</td>
</tr>
<tr>
<td>接触跡あり</td>
<td>接触跡なし</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>表4 光学特性のゴムシート</th>
<th>各潤滑剤透過率 (%)</th>
<th>ヘンズ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ポリエチル変性</td>
<td>93.4</td>
<td>4.2</td>
</tr>
<tr>
<td>長鎖アルキル変性</td>
<td>93.6</td>
<td>13.5</td>
</tr>
<tr>
<td>フェニール変性</td>
<td>分離し成形できず</td>
<td></td>
</tr>
<tr>
<td>高級脂肪酸エステル変性</td>
<td>分離し成形できず</td>
<td></td>
</tr>
<tr>
<td>不変性/不変性</td>
<td>分離し成形できず</td>
<td></td>
</tr>
<tr>
<td>潤滑剤なし</td>
<td>92.6</td>
<td>1.5</td>
</tr>
</tbody>
</table>
Table 5 Measurement conditions of dynamic friction coefficient

<table>
<thead>
<tr>
<th>測定条件</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>何重</td>
<td>200gf</td>
</tr>
<tr>
<td>速度</td>
<td>100mm/sec</td>
</tr>
<tr>
<td>角度</td>
<td>60°</td>
</tr>
<tr>
<td>相手材</td>
<td>POM(φ1.4mm)</td>
</tr>
<tr>
<td>サンプル</td>
<td>書き心地エラストマー厚み200μm/高透明PET厚み100μm/自己吸着著50μm</td>
</tr>
</tbody>
</table>

Table 6 Effect of main agent / curing agent ratio and amount of lubricant on dynamic friction coefficient

<table>
<thead>
<tr>
<th>潤滑剤添加量 (phr)</th>
<th>厚み200μm</th>
<th>厚み150μm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A水準</td>
<td>B水準</td>
</tr>
<tr>
<td>0.7</td>
<td>0.25</td>
<td>0.27</td>
</tr>
<tr>
<td>0.5</td>
<td>0.24</td>
<td>0.26</td>
</tr>
<tr>
<td>0.3</td>
<td>0.24</td>
<td>0.26</td>
</tr>
<tr>
<td>0.10</td>
<td>0.26</td>
<td></td>
</tr>
</tbody>
</table>

3-4. 耐久性試験（回転筆記試験）

Figure 10に示す回転筆記試験機を用いて、Table 7の条件で筆記時の耐久性を評価した。その結果、Figure 11に示すとおり書き心地エラストマー層にはキズや磨耗痕が認められなかった。

5. まとめ

本開発を通じて、筆記感に影響する因子を明らかにし、書き心地を定量的に評価することが出来た。その成果を用いて、ペンによる適度な四みずすべり性を発現させ、ボールペンで紙に書くような「書き心地」の範囲に入っていることが確認できた。

![Figure 9](image)

Figure 9 The relationship between load and dent in formulation Z

![Figure 10](image)

Figure 10 Circle writing test equipment
Table 7 Measurement conditions of circle writing test

<table>
<thead>
<tr>
<th>条件</th>
<th>測定条件</th>
</tr>
</thead>
<tbody>
<tr>
<td>荷重</td>
<td>500gf</td>
</tr>
<tr>
<td>転数</td>
<td>20rpm</td>
</tr>
<tr>
<td>転数数</td>
<td>10,000回転</td>
</tr>
<tr>
<td>相手材</td>
<td>φ60mm</td>
</tr>
<tr>
<td>筆記体</td>
<td>POM(φ1.4mm)</td>
</tr>
<tr>
<td>サンプル</td>
<td>書き心地エラストマー層(150μm)/高透明PET層(100μm)/自己吸着層(50μm)</td>
</tr>
</tbody>
</table>

Figure 11 The surface of easy writability sheet after circle writing test

を満足する「書き心地シート」を開発することができた。本報では基本グレードとなるクリア仕様の開発について述べたが、これをベースとし、さらに反射防止やブルーライトカットといった機能を付加した書き心地シートについても開発を行ない、市場に対して訴求力の高いラインナップを構築した。今後、獲得した技術をさらに発展させペンタフレット市場での一層の拡販を目指す。

References
1) http://www.bunka.go.jp/seisaku/bankashigikai/chosakukuen/hoki/h27_02/pdf/shiryo2.pdf

錦田 穎
Yutaka KAMADA
2000年 入社
高機能エラストマー製品事業部
Development of Flame and Heat Resistant Conveyor Belts

Hiroyuki SHIRIKE

Abstract

In recent years, the need for a conveyor belt having flame retardancy has been increased in order to minimize the damage caused by a fire. On the other hand, in heat-resistant conveyor belts capable of conveying high-temperature conveyed materials, conveyor belts having flame retardancy are currently not on the market in Japan.

Flame retardant and Heat resistant conveyor belts can be realized by designing cover rubber blends that can achieve both flame retardancy and heat resistance. We introduce the flame retardant heat resistant conveyor belt which has the first heat resistance and flame retardant performance in Japan that matches market needs.

Keywords: Flame resistant; Heat resistant; Conveyor belt

1. 緒 言

モノを選ぶという要求特性に関して、車両や船舶などによるビストン搬送に比べ、ベルトコンベヤは連続搬送であるため、大量搬送が可能という利点があり様々な分野で利用されている。当社では、ベルトコンベヤの主要構成部材であるコンベヤベルトの開発、製造を行っており、お客様の用途に合わせた様々な製品を取り揃えている。

多様な用途で使用される中、安全かつ安定した連続搬送が求められるベルトコンベヤにおいて、不測の事故によるライン停止は多大な損害を与えることになる。その中でも、火災発生時の被害を極力抑えるために難燃性を有したコンベヤベルトのニーズが高まってきている。また、製鉄所における鋼絞りやセメント工場における石灰石の搬送ラインでは、搬送物の温度が高いため、耐熱性に優れたコンベアベルトが用いられているが、難燃性を有した耐熱コンベヤベルトは国内では上市されていないのが現状である。

コンベヤベルトでは、主にベルト表面全体を覆ってい るカバーコムが主な層でゴムを厚さ6mm程度にしたこ とにより難燃性を付与している。一般的には、難燃性としてハロゲンを含む炭化水素系化合物を添加することが多い。しかし、耐熱ベルトにこの難燃剤を適用すると、耐熱性が著しく低下するため、これまでは難燃性と耐熱性を両立させたベルトの開発は困難であった。

今回の場合においては、難燃剤の燃焼機構で検討を深めることで難燃性と耐熱性を両立するゴム配合

を得ることができ、上記のニーズにマッチした国内初となる難燃耐熱コンベヤベルトの実現が可能となった。本稿では、本開発製品の一つである難燃中温耐熱ベルトについて紹介する。

2. ゴムの燃焼サイクルと難燃化について

ゴムの燃焼機構を Figure 1 に示す。燃焼液から発熱 が生じ、伝熱し、ゴム表面が加熱される。加熱され たゴムは温度が上昇し、ゴム固有の分解温度に達する と、熱分解しガスを発生する。熱分解により発生した ガスは可燃性であり、ガスの拡散を経て、大気中へ拡散される。大気中に拡散したガスが酸素で火災 決め、そこで燃焼が再燃し、このサイクルが繰り返される。この燃焼サイクルの各プロセスに作用し て燃焼を抑制するのが難燃剤の役割であり、代表的なものを Table 1 に示す。
3. 実験

3-1. 配合の検討

難燃化機構の異なるハロゲン系、水和金属系、リン系、窒素系から種々の難燃剤を選定し、テスト用の配合ゴムを作製した。各配合ゴムの難燃性および耐熱性の評価を実施した結果、それらを満足できる配合を見出すことができた。その配合を用いて、コンペヤベルトを作製し、難燃性および耐熱性の評価を実施した。

3-2. 難燃性の評価

JIS-K6324：2013難燃性コンペヤゴムベルト－等級及び試験方法に準拠した。短冊状の試験片を垂直に設置して、ガスパーカの炎を45度に傾けて、内炎の先端に試験片の下端が及ぶように設置する（Figure 2）。45秒間炎を当てた後、炎を取り除き、試験片についての炎の持続時間を測定する。また、再燃性試験として、炎を取り除いた後60秒を経過からも、試験片に風速1.5m/sの風を60秒間当てて、炎の再燃性の有無を調べる。JIS難燃3級判定は、炎の持続時間が60秒以内かつ再燃しない事となる。

JIS難燃試験の結果をFigure 3に示す。ガスパーカを当てた状態では、両者共に燃焼した。その後、ガスパーカの炎を除くと、耐熱コンペヤベルトは燃焼し続けたが、難燃耐熱コンペヤベルトは、直ちに消炎した。また、送風による炎の再燃性テストについても再燃せずとなった。

3-3. 耐熱性の評価

JIS-K6257：2010加硫ゴム及び熱可塑性ゴム－熱老化特性の求め方に準拠した。A法の強制循環形耐熱試験機（ギャザー式老化試験機）による熱老化方法を選択した。試験槽内温度を100℃に設定し、冷媒利用のサンプルを槽に入れられた後、7日経過後にサンプルを取り出し、室温まで再冷した。デュロメーター タイプA硬度の測定を実施した。硬度測定は、JIS-K6257-3：2012加硫ゴム及び熱可塑性ゴム－硬さの求め方Aに準拠した。

熱老化前後の外観変化を測定した結果をFigure 4に示す。熱老化前は耐熱ベルトが68度、難燃耐熱ベルトが66度であったものの、熱老化後は耐熱ベルトが75度、難燃耐熱ベルトが72度となった。

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Types of flame retardants and their mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td>耐燃剤</td>
<td>難燃化機械</td>
</tr>
<tr>
<td>ハロゲン系</td>
<td>燃焼場における高分子分解ガスと酸素の反応を主としてラジカル反応である。難燃剤の熱分解により発生したハロゲン元素は反応性が高いため、このラジカル反応を抑制し、燃焼の熱を抑制する。</td>
</tr>
<tr>
<td>水和金属系</td>
<td>難燃剤の熱分解により、分子中からH2Oを放出し、燃焼場の熱容量を上げることにより、温度を低下させ、燃焼の熱を抑制する。</td>
</tr>
<tr>
<td>リン系</td>
<td>燃焼は酸素数値が高く、燃焼し難い素材であり、リン系難燃剤は、ゴムの燃焼とともに表面に炭化層を形成する結果が得られることにより燃焼の熱を抑制する。</td>
</tr>
<tr>
<td>窒素系</td>
<td>難燃剤の熱分解により、分子中から窒素ガスが発生し、燃焼しているゴム表面に生成の酸化窒素を低減させることにより燃焼の熱を抑制する。</td>
</tr>
</tbody>
</table>

Figure 2 Arrangement of test piece and gas burner

Figure 3 JIS flame test results
FIGURE 4 Hardness change in heat aging (FR 7500 series)

硬度変化量は、耐熱ベルトが5ポイント、難燃耐熱ベルトが6ポイントであり、耐熱ベルトと難燃耐熱ベルトの熟老化における硬度変化量は同等水準であった。

4. 開発したベルトの種類

開発した難燃耐熱コンペヤベルトをTable 2に示す。ベルト表面温度が60〜100℃の範囲に適用できるベルトとして、耐熱クラック性能を重視したFR7500と耐摩耗性能を重視したFR7500Sを開発した。FR7500は、乾燥石灰石や肥料といった搬送物に適用しており、ベルトの寿命モードとして、熱によるカバーガムのクラックを想定した仕様である。他方、FR7500Sは、焼結鉄やコーラスといった搬送物に適用しており、ベルトの寿命モードとして、カバーガムの摩耗を想定した仕様である。また、ベルト表面温度がより高温となる搬送物（焼結鉄、クリンカー等）を想定し、100〜180℃の範囲に適用できるベルトとして、FR7700を開発した。いずれのベルトも、自己消炎性を有しており、JIS 3 級の難燃性となっている。

5. 結 言

カバーガム配合の難燃化処方の見直しと耐熱性との両立が可能となる配合設計により、耐熱コンペヤベルトに必要な耐熱性を維持したまま、コンペヤベルトJIS難燃規格を満足する難燃耐熱コンペヤベルトを開発することができた。

これらのベルトを使用することにより、従来では使用することが出来なかった高温搬送物の搬送ラインに於ける万一の火災発生時にも被害の拡大を抑制することが期待できる。

Table 2 Flame and heat resistant conveyor belts

<table>
<thead>
<tr>
<th>品名</th>
<th>FR7500</th>
<th>FR7500S</th>
<th>FR7700</th>
</tr>
</thead>
<tbody>
<tr>
<td>用途</td>
<td>耐熱耐耐熱クラック仕様</td>
<td>耐熱耐摩耗仕様</td>
<td>高温耐熱仕様</td>
</tr>
<tr>
<td>表面温度</td>
<td>60〜100℃</td>
<td>60〜100℃</td>
<td>100〜180℃</td>
</tr>
<tr>
<td>耐熱性能</td>
<td>自己消炎（JIS3級）</td>
<td>自己消炎（JIS3級）</td>
<td>自己消炎（JIS3級）</td>
</tr>
<tr>
<td>搬送物質</td>
<td>乾燥石灰石、肥料等</td>
<td>焼結鉄、コーラス等</td>
<td>焼結鉄、クリンカー等</td>
</tr>
</tbody>
</table>

尾崎 宽之
Hiroyuki SHIRIJE
2001年入社
産業資材事业部

Rando Technical Report No.22/2018 28
特許・実用新案登録一覧
(2016.10.1 ～ 2017.9.30)

<table>
<thead>
<tr>
<th>特許番号</th>
<th>発明者</th>
<th>発明の名称・要約</th>
</tr>
</thead>
<tbody>
<tr>
<td>出願 2011-179672 [2011/08/19]</td>
<td>田森 統一</td>
<td>（名称）ハーネス結末テープ用フィルム (要約) 耐熱性に優れ、手作業での巻き付けに良好に対応でき、更に、手作業性に優れるハーネス結末テープを製造するためのハーネス結末テープ用フィルムを提供する。</td>
</tr>
<tr>
<td>公開 2013-049038 [2013/02/28]</td>
<td>田森 統一</td>
<td>（名称）ハーネス結末テープ用フィルム (要約) 耐熱性に優れ、手作業での巻き付けに良好に対応でき、更に、手作業性に優れるハーネス結末テープを製造するためのハーネス結末テープ用フィルムを提供する。</td>
</tr>
<tr>
<td>登録 6186107 [2017/08/04]</td>
<td>谷口 仁</td>
<td>（名称）印刷構造体及び印刷構造体の製造方法 (要約) 印刷構造体として要求特性を満たし、不燃材料として防火認定を取得することができる印刷構造体を提供する。</td>
</tr>
<tr>
<td>出願 2012-194144 [2012/09/04]</td>
<td>呉野真理子</td>
<td>（名称）印刷構造体及び印刷構造体の製造方法 (要約) 印刷構造体として要求特性を満たし、不燃材料として防火認定を取得することができる印刷構造体を提供する。</td>
</tr>
<tr>
<td>公開 2014-046671 [2014/03/17]</td>
<td>呉野真理子</td>
<td>（名称）印刷構造体及び印刷構造体の製造方法 (要約) 印刷構造体として要求特性を満たし、不燃材料として防火認定を取得することができる印刷構造体を提供する。</td>
</tr>
<tr>
<td>登録 6030385 [2016/10/28]</td>
<td>呉野真理子</td>
<td>（名称）印刷構造体及び印刷構造体の製造方法 (要約) 印刷構造体として要求特性を満たし、不燃材料として防火認定を取得することができる印刷構造体を提供する。</td>
</tr>
<tr>
<td>出願 2012-221536 [2012/10/03]</td>
<td>遊方 康範</td>
<td>（名称）清潔具及び清潔装置 (要約) ルーラ表面に電圧を形成することによって高い異物除去効果を発する清潔具を提供することを目的とする。</td>
</tr>
<tr>
<td>公開 2014-73444 [2014/04/24]</td>
<td>遊方 康範</td>
<td>（名称）清潔具及び清潔装置 (要約) ルーラ表面に電圧を形成することによって高い異物除去効果を発する清潔具を提供することを目的とする。</td>
</tr>
<tr>
<td>登録 6073629 [2017/01/13]</td>
<td>遊方 康範</td>
<td>（名称）清潔具及び清潔装置 (要約) ルーラ表面に電圧を形成することによって高い異物除去効果を発する清潔具を提供することを目的とする。</td>
</tr>
</tbody>
</table>

BANDO TECHNICAL REPORT No.22/2018
<table>
<thead>
<tr>
<th>特許番号</th>
<th>発明者</th>
<th>発明の名称・要約</th>
</tr>
</thead>
<tbody>
<tr>
<td>出願 2013-20541 [2013/02/05]</td>
<td>中村 敏二 荒木 伸介</td>
<td>（名称）ペットの接続構造、コンベアペット及びペットの接続方法 （要旨）一定のペットを使用するコード部から延伸するコードの接続密度を容易かつ確実に向上できるペットの接続構造、このペットの接続構造を用いたペットの接続方法及びペットの接続方法を提供することを目的とする。 本発明は、一方の端部から延伸するコード及びこのコードより纏出距離が短く単一又は複数のコードが指定の順序で転方向に並列する一方のコード群と、他の端部から同様に延伸する長コード及び短コードが上記一方のコード群と同順序で並列し、この短コードが上記一方のコード群の短コードと突き合わされ、この長コードが上記一方のコード群の長コードと並置される条件のコード群を備えるペットの接続構造であって、上記一方のコード群及び他のコード群における長コードが複数連続して並置され、短コードの少なくとも転方向の一方の端に長コードが接続して並置されていることを特徴とする。</td>
</tr>
<tr>
<td>出願 2013-024781 [2013/02/12]</td>
<td>沢崎 裕太</td>
<td>（名称）伝動ペット用ブリユニット及びそれを備えたペット伝動装置 （要旨）伝動ペットの駆行や片寄りを安定して抑制でき、部品加工費が安価で組立て容易な自動収縮式の伝動ペット用ブリユニットを提供する。 ブリユニットを回転自在に支持する円筒の調心輪とその溝から挿入される固定輪との間に1本の支持ビンでピン留めされた挿入部材が配置され、調心輪に一方向の挿入孔が前方向に対して貫通形成されると共に、調心輪及び固定輪に互いに近方向に平行面が形成され、平行な板材からなる挿入部材が、ピン留めされる前の状態で挿入輪の位置方向及び寄心位置に沿う方向に位置調整可能に挿入孔から周辺面の間に挿入されている。</td>
</tr>
<tr>
<td>出願 2013-038642 [2013/03/04]</td>
<td>石井 倫裕 嵯峨 博之</td>
<td>明石 貴光 野口 忠彦 松岡 宏</td>
</tr>
<tr>
<td>出願 2013-041967 [2013/04/04]</td>
<td>川原 英昭 新谷 裕樹</td>
<td>（名称）伝動ペットの製造方法 （要旨）伝動ペットの安定時張力を調整する。 心臓の乾燥時収縮力及び/又は中間時伸度を測定する心臓検査工程、心臓及び未架橋ゴム組成物を巻き付けする材料セット工程、該心臓及び未架橋ゴム組成物を加熱及び加圧して円筒状のペットスラブに加硫成型工程及び加硫成型工程を備えた伝動ペットの製造方法において、測定した心臓の乾燥時収縮力及び/又は中間時伸度に基づいて、製造される伝動ペットの安定時張力を影響を及ぼす製造条件の設定を変更する。</td>
</tr>
</tbody>
</table>

BANDO TECHNICAL REPORT No.22/2018 30
<table>
<thead>
<tr>
<th>特許番号</th>
<th>発明者</th>
<th>発明の名称・要約</th>
</tr>
</thead>
<tbody>
<tr>
<td>出願 2013-041954[2013/03/04]</td>
<td>三田 浩</td>
<td>電子写真装置用導電性エラストマー部材</td>
</tr>
<tr>
<td>公開 2014-169575[2014/09/18]</td>
<td></td>
<td>安定した電気特性を発揮しうる電子写真装置用導電性エラストマー部材を提供する。</td>
</tr>
<tr>
<td>登録 6139182 [2017/05/12]</td>
<td></td>
<td>特定のポリエステルポリオールを用いたポリウレタンエラストマーに黒鉛とともに小サイズなカーボンブラックを多量に含有させた導電性エラストマーによって形成された電子写真装置用導電性エラストマー部材を提供する。</td>
</tr>
<tr>
<td>出願 2013-106456[2013/05/20]</td>
<td>三田 浩</td>
<td>電子写真装置用導電性エラストマー部材</td>
</tr>
<tr>
<td>公開 2014-228998[2014/12/08]</td>
<td></td>
<td>安定した電気特性を発揮しうる電子写真装置用導電性エラストマー部材を提供する。</td>
</tr>
<tr>
<td>登録 6116364 [2017/03/31]</td>
<td></td>
<td>特定のポリエステルポリオールを用いたポリウレタンエラストマーにカーボンブラックと黒鉛を含有させた導電性エラストマーによって形成された電子写真装置用導電性エラストマー部材を提供する。</td>
</tr>
<tr>
<td>出願 2013-106454[2013/05/20]</td>
<td>浜崎 裕太</td>
<td>転動ブリのアライメント調整方法</td>
</tr>
<tr>
<td>公開 2014-228997[2014/12/08]</td>
<td></td>
<td>転動ブリ及び駆動ブリ間の、転動ブリ具を含めて伝動ベルトを卷き取るベルト装置において、転動ブリ具を、精度良く、駆動ブリ及び駆動ブリ具にアライメント調整する方法を提供する。</td>
</tr>
<tr>
<td>登録 6116363 [2017/03/31]</td>
<td></td>
<td>転動ブリ具の転動ブリ具を含めて伝動ベルト装置において、転動ブリ具を、精度良く、駆動ブリ及び駆動ブリ具にアライメント調整する方法を提供する。</td>
</tr>
<tr>
<td>出願 2013-140669[2013/07/04]</td>
<td>難波 大樹</td>
<td>転動性電極及びセンサ</td>
</tr>
<tr>
<td>公開 2015-014313[2015/01/22]</td>
<td></td>
<td>導電性に優れ、かつ、耐久性を有する転動性電極を提供する。</td>
</tr>
<tr>
<td>登録 6108983 [2017/03/17]</td>
<td></td>
<td>本発明の転動性電極は、エラストマー構成物からなる基材と、上記基材と一体化されるカーボンノンノーマーからなる電極部材を備え、上記カーボンノンノーマーは、単層カーボンノンノーマーと多層カーボンノンノーマーとの構成物であり、上記単層カーボンノンノーマーと上記多層カーボンノンノーマーとの可溶性に対する、上記単層カーボンノンノーマーの含有量は、50～70％であることを特徴とする。</td>
</tr>
</tbody>
</table>

BANDO TECHNICAL REPORT No.22/2018
<table>
<thead>
<tr>
<th>特許番号</th>
<th>発明者</th>
<th>発明の名称・要約</th>
</tr>
</thead>
</table>
| 出願 2013-198695 [2013/09/25] | 田中 昌奈 | （名称）加硫フィルム、加硫成形品及び加硫成形品の製造方法
（要約）加硫成形品を印刷機の堅牢性に優れ、充分な表面硬度を有えるととも
に、優れた寸法安定性を有する加硫成形品を作製することができる加
塩化ビニリデン樹脂成形物からなるタープフィルムの一方の面に印画層が積
厚され、他方の面にホットメタル接着層が積厚されたタープフィルム
であるが、上記塩化ビニリデン樹脂成形物は、塩化ビニリデン樹脂、可塑
剤、並びに、少なくとも紫外線吸収性化合物及び重合開始剤を含有す
る紫外線硬化変成剤を含有し、上記印画層は、溶融系インクを用いて
形成されていることを特徴とする加硫フィルム。 |
| 出願 2013-253029 [2013/12/06] | 香山 大輔 | （名称）オートテントシェナ
（要約）優れたダンピング特性を有するオートテントシェナを提供する。
オートテントシェナ1は、軸を有する固定部材と、固定部材に回転自在
に取り付けられた軸部と、軸部上に設けられたブリと、固
定部材の軸の外側を囲み、固定部材の軸回り方向にアーム部を付着す
る弾性部材と、弾性部材の両側に配置され、アーム部と挙動可能な
第1の振動部材と、弾性部材の外側に配置され、アーム部と挙動可能な
第2の振動部材を備えている。 |
| 出願 2013-534575 [2013/07/30] | 国枝 玄史 | （名称）ペット取付治具
（要約）複数のブリにペットを取り付ける際において、ペット取付治具から
のペット外れを、ペットの局所的な圧縮及び引張による損傷を防止
する。
ペットの側面に一様な圧を対応させて配置される治具本体と、治具本体
の一様な圧をペットの外周に沿うように突設され、且つ基端側
表面にペットを保持する保持面を有し、ペットのブリ端に接した
状態で、ペットを保持面を経てペットの外周に沿って引き出すペット
治具内部を構成。保持面を、ペットの外側面が治具本体側を向くよ
うに治具本体側の一部を頂部としてその周りに向かって下側する共
に、ペット引き出し方向に沿って山状に曲がった形状とする。 |
| 出願 2013-261684 [2013/12/18] | 大西 淳 | （名称）ポリウレタンエラストマーからなる弾性層を有する現象ローラ
（要約）低密度で耐摩耗性に優れ、長寿命な現象ローラを供給する。また、表
面積の小さい現象ローラを提供する。
中心軸であるシャフトと、数平均分子量が4500〜5000であり、飽和重
度が0.01meq/g以下の三官能のポリエチルポリオールを50〜80wt%、数平均分子量が2500〜3500であり、飽和重度が0.01meq/g以
下である三官能のポリエチルポリオールを50〜20wt%含むポリオー
ル成形物と、ポリイソシアネートから重合されたポリウレタンエラ
ストマーからなる、前記シャフトの外周を覆う弾性層と、該弾性層上
に形成された少なくとも1層のコーティングを、有する現象ローラ。 |

BANDO TECHNICAL REPORT No.22/2018 32
<table>
<thead>
<tr>
<th>特許番号</th>
<th>発明者</th>
<th>発明の名称・要約</th>
</tr>
</thead>
<tbody>
<tr>
<td>出願 2013-540626 [2012/10/09]</td>
<td>武藤 正史</td>
<td>（名称）接合用組成物 （要旨）比較的低温での接合によって高い接合強度が得られるとともに、使用温度上昇時の樹脂成分の分解、変化などの影響接合強度の低下が生じ難しい耐熱性を兼ねた接合用組成物、特に金属粒子を含む接合用組成物を提供する。</td>
</tr>
<tr>
<td>公開 WO2013/061527</td>
<td>山田 光</td>
<td></td>
</tr>
<tr>
<td>[2013/05/02]</td>
<td>下山 賢治</td>
<td></td>
</tr>
<tr>
<td>登録 6021816 [2016/10/14]</td>
<td>涼田 哲文</td>
<td></td>
</tr>
<tr>
<td>出願 2013-540624 [2012/09/27]</td>
<td>吉田 希生</td>
<td>（名称）摩擦伝達ベルトの製造方法 （要旨） プリ目部の間で生じるスリップ音の抑制効果を極小化し、摩擦力に対して長期にわたって得ることができるようにする。</td>
</tr>
<tr>
<td>公開 WO2013/061512</td>
<td>金 成損</td>
<td></td>
</tr>
<tr>
<td>[2013/05/02]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>登録 6158708 [2017/06/16]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>出願 2013-553110 [2012/12/25]</td>
<td>吉田 希生</td>
<td>（名称）摩擦伝達ベルト及びその製造方法、並びにベルト運搬装置 （要旨） 走行初期から長期に渡って有効に異音の発生を抑制することができる摩擦伝達ベルトを提供する。</td>
</tr>
<tr>
<td>公開 WO2013/105191</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[2013/07/18]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>登録 6080985 [2017/02/10]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>出願 2014-61827 [2014/03/25]</td>
<td>内藤 健樹</td>
<td>（名称）樹脂成形品の製造方法 （要旨）フィラーや樹脂シートの厚さ方向に配向させた樹脂シートの効率的な製造方法を提供する。</td>
</tr>
<tr>
<td>公開 2015-71287 [2015/04/16]</td>
<td>三毛 恵哉</td>
<td></td>
</tr>
<tr>
<td>登録 6071935 [2017/01/13]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>出願 2014-500761 [2012/12/26]</td>
<td>高橋 剛治</td>
<td>（名称）摩擦伝達ベルト （要旨）摩擦伝達ベルトの使用時におけるスリップ音を抑制する。</td>
</tr>
<tr>
<td>公開 WO2013/124943</td>
<td>大久保義幸</td>
<td></td>
</tr>
<tr>
<td>[2013/08/29]</td>
<td>城野 春彦</td>
<td></td>
</tr>
<tr>
<td>登録 6101877 [2017/03/03]</td>
<td>稲村 茂之</td>
<td></td>
</tr>
<tr>
<td>野口 忠彦</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BANDO TECHNICAL REPORT No.22/2018
<table>
<thead>
<tr>
<th>特許番号</th>
<th>発明者</th>
<th>発明の名称・要約</th>
</tr>
</thead>
<tbody>
<tr>
<td>出願 2014-506036 [2013/03/18]</td>
<td>坂中 宏行</td>
<td>高負荷伝動用Vベルトの走行初期からの駆動力・張力変換率の変化に伴うベルト張力の変化を抑制することができる高負荷伝動用Vベルトを提供する。</td>
</tr>
<tr>
<td>公開 WO2013/140784 [2013/09/26]</td>
<td>高負荷伝動用VベルトBにおいて、張力帯1及びブロック10のベルト幅方の端面は、ブリード面と接続する滑動面を構成している。この張力帯1の接触面1cの面積S1と、ブロック10の接触面12の面積S2がS1/S2=の関係になるように設定する。</td>
<td></td>
</tr>
<tr>
<td>登録 6109148 [2017/03/17]</td>
<td>坂中 宏行</td>
<td>高負荷伝動用Vベルトの走行初期からの駆動力・張力変換率の変化に伴うベルト張力の変化を抑制し、駆動ユニットの性能を低くしてベルトの初期発熱の抑制、高効率化、耐久性の向上を図る。</td>
</tr>
<tr>
<td>出願 2014-506035 [2013/03/18]</td>
<td>吉見 武浩</td>
<td>高負荷伝動用Vベルトの伝動効率を小さくし、振動等によって軸間距離が変動する機器においても安定した伝動を実現するベルト伝動システムを提供する。</td>
</tr>
<tr>
<td>公開 WO2013/140783 [2013/09/26]</td>
<td>ベルト伝動システムは、駆動ブーリーと、従動ブーリーと、無端状のベルトと、第1のアイドラ及び第2のアイドラを備える。第1のアイドラは、駆動ブーリーの押し面においてベルトを駆動ブーリーに押し付けた状態で組成され、第2のアイドラは、駆動ブーリーの詰込み面においてベルトを駆動ブーリーに押し付け可能となっている。第2のアイドラをベルトに接触させるか否かにより従動ブーリーへの圧力の伝達がオン又はオフになる。</td>
<td></td>
</tr>
<tr>
<td>登録 6122838 [2017/04/07]</td>
<td>松田 幹</td>
<td>動ベルト高負荷でブーリに巻き付けられて、改め、小径のブーリに巻き付けられて用いられた場合でも十分な耐久性を有する伝動ベルトを提供する。</td>
</tr>
<tr>
<td>出願 2014-151491 [2014/07/25]</td>
<td></td>
<td>伝動ベルトは、ゴム組成物で形成されたベルト本体に心絞が巻かされている。ベルト本体のうち少なくとも心絞が接触する部分は、エチレ</td>
</tr>
<tr>
<td>特許番号</td>
<td>発明者</td>
<td>発明の名称・要約</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>------------------</td>
</tr>
<tr>
<td>出願 2014-519822[2013/05/27] 公開 WO2013/183248 [2013/12/12] 登録 6124885 [2017/04/14]</td>
<td>松本 英樹</td>
<td>（名称）クリーニング装置 （要旨）燃油を駆動しつつ除去することができ、装置のコスト削減、及びコンパクト化を図ることができるクリーニング装置を提供する。被クリーニング体Sの表面S1に存在する燃油を静電気を利用して除去するクリーニング装置1であって、被クリーニング体S表面S1に接触させるクリーニングローラ2と、クリーニングローラ2に接触してクリーニングローラ2表面の燃油を除去するブラシローラ3A、3Bを装備する。クリーニングローラ2表面の燃油がブラシローラ3A、3Bで除去されるため、燃油を効率よく除去することが可能となる。</td>
</tr>
<tr>
<td>特許番号</td>
<td>発明者</td>
<td>発明の名称・要約</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>-----------------</td>
</tr>
</tbody>
</table>
本発明は、除去されるフィルム状又は板状対象物表面のクリーニング装置であって、上記対象物の搬送方向と傾斜直角対象物表面と平行な回転軸を中心として回転自立に配設され、表面を蒸発させた状態で上記対象物表面に接触させるクリーニングロータと、このクリーニングロータと傾斜平行に設置され、回転軸を設けた上記対象物表面に接触させるローラ状のクリーニングブラシを備え、上記クリーニングロータにおける対象物表面の接触部分での回転方向が上記対象物の搬送方向に対して順方向であり、上記クリーニングブラシにおける対象物表面の接触部分での回転方向が上記対象物の搬送方向に対して逆方向であること特徴とする。上記クリーニングブラシも、蒸発させた状態で上記対象物表面に接触させる。
 |
電極容量型スイッチ装置は、センサ出力に基づいてコンホットパルス信号を出力する第1信号出力部と、スイッチ信号を出力するスイッチ部を備えている。スイッチ部は、コンホットパルス信号の有無を検知Tcと比較判定することでスイッチ信号をコンホット出力する。第1信号出力部は、センサ出力を微分することでコンホットパルス信号を生成し、不完全微分回路と不完全微分回路に対して、検知Tcよりも低電圧を基準電圧として与えることで、コンホットパルス信号の低レベルを検知Tcよりも低くする基準電圧供給回路とを備えている。
 |
支持部材と、上記支持部材に一体化された板状の弾性部材を備え、上記板状の弾性部材は、厚さ方向に向かうする2つの面のうちの少なくとも一方の面を、镂縁が相手部材と当接する当接面とする作業機械用シール部材であって、上記弾性部材は、熱硬化性ポリウレタンと無機粒子を含む組成物からなり、上記無機粒子は、上記弾性部材の厚さ方向において、上記当接面側に偏在していることを特徴とする作業機械用シール部材。
 |
Vベルトは、V型に構成する部分がゴム組成物で形成されている。
前記ゴム組成物には、有機繊維のカーボンファイバー及び有機繊維繊維がVベルト幅方向に配置するように含まれる。前記ゴム組成物は、列方方向の貯蔵弾性率の変力列方向の貯蔵弾性率に対する比が5以上である。
<table>
<thead>
<tr>
<th>特許番号</th>
<th>発明者</th>
<th>発明の名称・要約</th>
</tr>
</thead>
<tbody>
<tr>
<td>出願 2015-539854 [2014/08/07]</td>
<td>野中 敬三 高野 勇宏</td>
<td>(名称) ベルト及びその製造方法 (要約) ベルトにおいて、ベルト内断面を構成する部分を高弾性率化しつつ、ベルト内断面の摩擦係数の低下抑制を図る。ベルトは、ベルト内断面を構成する部分がゴム組成物で形成されている。前記ゴム組成物には、繊維径が300〜1000nmの有機繊維のナノファイバーが含まれている。</td>
</tr>
<tr>
<td>出願 2016-512716 [2015/10/06]</td>
<td>河村 史博 岩永 友樹 高木 大輔 西藤 和夫 田浦 俊和</td>
<td>(名称) 研磨材及び研磨材の製造方法 (要約) 基板材料の加工効率を向上させる手段を用いて、共に研磨工具がシンプルで低コスト、サファイアや炭素を行い、更に増加基板であっても効率よく、かつ精度よく研磨できる研磨材の提供を目的とする。 本発明は、基材で、その表面側に積層される研磨層をと置換できる研磨材である。機械研磨層が無機物を主成分とするバイナダーとこのバイナダー中に分散される研磨粒子を有し、上記研磨層の表面が構成される。上記研磨層表面の最大山高さ（Rη）が2.5μm以上70μm以下であることを特徴とする。上記研磨層の表面が平滑であるんを多くすると2以上配設されているとよい。上記バイナダーが酸化物を主成分とする充填硬化を有し、上記酸化物硬化層の平滑な粒子径が上記研磨粒子の平均粒子径よりも小さいとよい。上記無機物がカルシウム酸であるとよい。上記研磨粒子がダヤモンドであるとよい。</td>
</tr>
<tr>
<td>出願 2016-512680 [2015/03/31]</td>
<td>大高 秀夫 河津 友弘 岡所 俊亮</td>
<td>(名称) センサ装置 (要約) 生体に貼り付けて使用され、生体表面の変形の追跡を容易に、かつ、長期間地運動体の追跡を目的とする。エラストマー組成物からなるシート状の第1電極層と、カーボンナチュームを含有する導電性組成物からなり、上記第1電極層の表面及び裏面のそれぞれに上記第1電極層を挟んで少なくとも1部が対を形成し、その表面が平滑であるのを多くすると2以上配設されているとよい。上記第1電極層および第2電極層を有し、上記第1電極層および第2電極層の対を形成する部分を検出部とし、上記第1電極層の裏面の変形を変形することに可逆的に変形するセンサ素子と、上記検出部における変形の変化を計測する計測器を備え、生体に貼り付けて使用され、生体表面の変形に応えるセンサ装置。</td>
</tr>
<tr>
<td>出願 2016-063700 [2016/03/30]</td>
<td>吉田 隆一 中野 俊久</td>
<td>(名称) 電付ベルトの製造方法 (要約) 本発明は、製造装置のコストの増大を抑制しつつ、芯盤コードのテンションや模様深さのぼつを比較的容易に抑制することができる電付ベルトの製造方法を提供することを目的とする。 本発明の電付ベルトの製造方法は、芯盤コードが幅方向に狭い間隔に模様された芯付ベルトの製造方法であって、複数の芯盤コード、及びこの芯盤コードを被覆し、熱可塑性樹脂を主成分とする覆覆部を有するシート状の芯付面用部品、並びにシート状の基部、及びこの基部の一面に配置され、横断方向に狭い間隔で設けられた複数の面を有する裏部面用部品を準備する工程と、1又は複数の上記裏面用部品を上記裏部面用部品の裏面に設けられた面に反対の面に熱粘着する工程とを備える。上記準備工程において、芯付面の裏面用部品をさらに準備し、上記横断面用工程において、上記裏面用部品を上記芯付面用部品にさらに熱粘着するよう。</td>
</tr>
</tbody>
</table>

BANDO TECHNICAL REPORT No.22/2018
<table>
<thead>
<tr>
<th>特許番号</th>
<th>発明者</th>
<th>発明の名称・要約</th>
</tr>
</thead>
<tbody>
<tr>
<td>出願 2016-520173 [2015/11/09]</td>
<td>新谷 裕博</td>
<td>（名称）導電性インク
（要約）十分な導電性及び基板との良好な密着性を有する導電塗料を低温で乾燥することができる転写印刷用導電性インクを提供する。金属粒子と、エタノールを含む溶媒と、水系樹脂を有する高沸点溶剤0.1～30質量％と、を含むこと、を特徴とする転写印刷用導電性インク。</td>
</tr>
<tr>
<td>公開 WO2016/084312 [2016/06/02]</td>
<td>松田 尚木村 腫起</td>
<td>（名称）ゴム繊維複合体
（要約）ゴム繊維複合体における繊維部材のゴム部材への接着性を高める。ゴム繊維複合体は、ゴム部材と接着処理が施された繊維部材とが複合した構造を含む。接着処理が施された繊維部材は、エチレン－オレフィン系エラストマーを主体とするゴム成分に、ナフタールポリウレタンを有する接着促進剤が配合され、かつ有機酸化物により発泡されたゴム組成物に接触している。</td>
</tr>
<tr>
<td>登録 6101403 [2017/03/03]</td>
<td>高橋 弘林 大谷 齋藤 猛</td>
<td>（名称）ベルト伝動システム
（要約）スリップや抗滑発生を抑えつつ、ベルトやブリーゼ寿命延長及び燃費の改善を図られたベルト伝動システムを提供する。ベルト伝動システムは、第1のブリーゼ、第2のブリーゼ、第1のテンションブリーゼ、固定部材、固定部材の軸回り方向に動か可能に設けられたアームを有する第1のオートテンションブリーゼ、第2のテンションブリーゼを備える。第1のブリーゼが駆動ブリーゼである時、及び第2のブリーゼが駆動ブリーゼである時のそれぞれにおいて、第1のテンションブリーゼ及び第2のテンションブリーゼのうち、最大のトルクが発生する軸の傾き側に位置するテンションブリーゼのトルクが、張り側に位置するテンションブリーゼのトルクより大きい。</td>
</tr>
<tr>
<td>出願 2016-530261 [2016/04/21]</td>
<td>岡崎 賢彦 藤谷 崇幸</td>
<td>（名称）シート状物及びシート状物の製造方法
（要約）初期から長期間において変色や変質性に優れるとともに、効率良く均一に着色し、柔軟性に富み、任意の形状に曲げて使用することが可能なフレキシブル導光板を提供する。熱硬化性ポリウレタンからなるフレキシブル導光板であって、上記熱硬化性ポリウレタンは、ポリエチルポリオール、ポリオキシプロトノンポリオール及びポリカーボネートポリオールから選択される少なくとも1種のポリオール成分と脂肪族ポリオキシネット成分との反応させてなるウレタンポリマーを、硬化剤と、又は、硬化剤及び上記ポリオール成分との混合物と、非アミン系触媒の存在下で硬化させなる熱硬化性ポリウレタンであることを特徴とするフレキシブル導光板。</td>
</tr>
<tr>
<td>特許番号</td>
<td>発明者</td>
<td>発明の名称・要約</td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>出願 2016-534748 [2016/05/24] 公開 WO2016/209194 [2016/12/22] 登録 6085723 [2017/02/03]</td>
<td>西藤 和夫 下山 賢治 岩永 友樹 田浦 正和</td>
<td>（名称）研磨材及び研磨材の製法方法 （要旨）本発明は、研磨レート及び平滑化精度を優れ、かつ比較的長期間に渡 り研磨レートが低下し難い研磨材を提供することを目的とする。 本発明は、基材と、この基材の表面側に積層され、砥粒及びそのバイナダーを含む研磨層と、上記基材の裏側に積層される被覆層を含 む研磨材であって、上記砥粒がダイヤモンド砥粒であり、テーパー 摩耗試験による研磨層の摩耗量が0.03gまで、0.18g以下であり、上記 研磨層の表面側から測定したアスカーD硬度が80°以上90°以下である ことを特徴とする。上記バイナダーのまず成分が無素であるとよい。 上記バイナダーが熱可塑化剤を主成分とする充填剤を含有するとよ い、上記研磨層が表面に複数の溝を有するとよい。上記研磨層は印字 法により形成されるとよい。</td>
</tr>
<tr>
<td>出願 2016-536264 [2015/08/21] 公開 WO2016/031312 [2016/03/03] 登録 6067873 [2017/01/06]</td>
<td>内藤 宽樹 三宅 彰哉 向井 史雄</td>
<td>（名称）熱伝導性樹脂成形品 （要旨）安価で大量生産が可能な、厚さ方向への優れた熱伝導性を有する熱伝導性樹脂成形品であって、変形を伴う部材や複雑な表面形状を有する部材に対しても優れた放熱効果を発揮する熱伝導性樹脂成形品を提供する。 樹脂と熱伝導性フィラーを有する熱伝導性樹脂成形品であって、熱伝導性フィラーは熱伝導性樹脂成形品の厚さ方向に配向し、熱伝導性樹脂成形品における熱伝導性フィラーの体積含有率が20%～30%を保つもの であり、樹脂のウェルドラインが熱伝導性樹脂成形品の厚さ方向に 形成されており、熱伝導性樹脂成形品にオイル成分が含浸しているこ とを特徴とする熱伝導性樹脂成形品。</td>
</tr>
</tbody>
</table>

BANDO TECHNICAL REPORT No.22/2018
<table>
<thead>
<tr>
<th>特許番号</th>
<th>発明者</th>
<th>発明の名称・要約</th>
</tr>
</thead>
</table>
| 出願 2016-542777 [2016/01/05] | 齋藤 俊央, 伊藤 吉弘, 高橋 信子 | 〈名称〉超伝導性電流計の製造方法
〈要約〉電極の製造方法に伴う応力の影響を考慮した超伝導性電流計の製造方法を提供する。 |
〈要約〉エポキシ樹脂の製造方法を提供する。 |
| 登録 0195962 [2017/02/03] | 齋藤 俊央, 伊藤 吉弘, 高橋 信子 | 〈名称〉超伝導性電流計の製造方法
〈要約〉電極の製造方法に伴う応力の影響を考慮した超伝導性電流計の製造方法を提供する。 |
| 出願 2016-543208 [2016/06/25] | 梅原 俊夫 | 〈名称〉検出装置
〈要約〉センサの電極を用いた検出装置の応答性を高める方法を提供する。 |
| 公開 WO2016/200678 [2016/12/29] | 梅原 俊夫 | 〈名称〉検出装置
〈要約〉センサの電極を用いた検出装置の応答性を高める方法を提供する。 |
| 登録 6163611 [2017/06/23] | | 〈名称〉検出装置
〈要約〉センサの電極を用いた検出装置の応答性を高める方法を提供する。 |
| 出願 2016-546110 [2016/07/08] | 外村 聡也 | 〈名称〉電極の製造方法
〈要約〉電極の製造方法を提供する。 |
〈要約〉電極の製造方法を提供する。 |
| 登録 605246 [2016/12/09] | 外村 聡也 | 〈名称〉電極の製造方法
〈要約〉電極の製造方法を提供する。 |
| 出願 2016-547637 [2016/07/15] | 吉田 悠彌 | 〈名称〉摩擦伝動ペルト
〈要約〉摩擦伝動ペルトの摩擦を改良した摩擦伝動ペルトを提供する。 |
| 公開 WO2017/033392 [2017/03/02] | 吉田 悠彌 | 〈名称〉摩擦伝動ペルト
〈要約〉摩擦伝動ペルトの摩擦を改良した摩擦伝動ペルトを提供する。 |
| 登録 0682853 [2017/01/27] | | 〈名称〉摩擦伝動ペルト
〈要約〉摩擦伝動ペルトの摩擦を改良した摩擦伝動ペルトを提供する。 |
<table>
<thead>
<tr>
<th>特許番号</th>
<th>発明者</th>
<th>発明の名称・要約</th>
</tr>
</thead>
</table>
| 出願 2016-556029 [2016/09/02] | 市来 智仁 神代 早紀 | (名称) 洗浄剤製品の製造方法
(要約) 洗浄剤製品の液面を含む溶液樹脂を射出成形するとき、成形品の厚さを厚くしても表面の剥げや発泡不良の発生を抑えることができ、断熱性に優れた洗浄剤製品を製造できる洗浄剤製品の製造方法を提供する。 |
| 公開 WO2017073168 [2017/05/04] | | |
| 登録 6077726 [2017/01/20] | | |
| 出願 2016-556030 [2016/09/02] | 市来 智仁 神代 早紀 | (名称) 洗浄剤製品の製造方法及び洗浄剤製品
(要約) 簡易な連続性を有する洗浄剤製品を効率よく製造できる洗浄剤製品の製造方法及び、そのような方法で得られる洗浄剤製品を提供する。 |
| 公開 WO2017077764 [2017/05/11] | | |
| 登録 6043897 [2016/11/18] | | |
| 出願 2016-561387 [2016/10/04] | 須崎 昌太 | (名称) 張力調定装置
(要約) 張力調定装置において、被測定材の厚さが変化しても正確に張力測定が可能にする。 |
| 公開 WO2017130246 [2017/08/03] | | |
| 登録 6109446 [2017/03/17] | | |
| 出願 2016-561869 [2016/10/03] | 眞鍋 友哉 | (名称) Vリップベルト及びその製造方法
(要約) 実用に耐え得る高強度Vリップベルトを提供する。 |
| 公開 WO2017061100 [2017/04/13] | | |
| 登録 6114482 [2017/03/24] | | |

BANDO TECHNICAL REPORT No.22/2018
<table>
<thead>
<tr>
<th>特許番号</th>
<th>発明者</th>
<th>発明の名称・要約</th>
</tr>
</thead>
<tbody>
<tr>
<td>出願 2016-561870 [2016/10/03]</td>
<td>大久保泰幸</td>
<td>根込浩一郎</td>
</tr>
<tr>
<td>公開 WO2017/094213</td>
<td></td>
<td>(名称) Vリブドベルト</td>
</tr>
<tr>
<td>登録 6073702 [2017/02/20]</td>
<td></td>
<td>(要旨) 耐磨耗性及び耐熱性が優れたVリブドベルトを提供する。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vリブドベルトの圧縮ゴム層は、Vリブの側面部を含むように設けられた表面ゴム層とその内側に設けられた内側ゴム部を有する。表面ゴム層及び内側ゴム部は、エチレン－α＝オレフィンエラストマーをゴム成分の主体とするゴム組成物で形成されている。表面ゴム層を形成するゴム組成物のゴム成分におけるエチレン－α＝オレフィンエラストマーのエチレン含有率が、内側ゴム部を形成するゴム組成物のゴム成分におけるエチレン－α＝オレフィンエラストマーのエチレン含有率よりも高い。</td>
</tr>
<tr>
<td>出願 2016-560596 [2016/09/26]</td>
<td>細田浩希</td>
<td>大西 淳</td>
</tr>
<tr>
<td>公開 WO2017/057245 [2017/04/06]</td>
<td>中根聰一郎</td>
<td>(名称) 光学透明粘着シート、積層体、積層体の製造方法、及び、タッパバネル付き表示装置</td>
</tr>
<tr>
<td>登録 6163272 [2017/06/23]</td>
<td></td>
<td>(要旨) 硬化性ボリュレート組成物を用いて、ガラス板等の被着体に強力に接したときに、高温・湿潤環境であっても気泡の発生を抑制でき、安定した粘着力発揮し、持続的に保持できる光学透明粘着シートを提供する。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>硬化性ポリウレート組成物の硬化物からなる光学透明粘着シートで、上記硬化性ポリウレート組成物は、ポリオール成分及びポリイソシアネート成分を有し、上記ポリオール成分は、オレフィン骨格を有し、上記ポリイソシアネート成分は、イソフロンイソシアネート及び、変性ポリイソシアネートの少なくとも一種を含み、上記変性ポリイソシアネートは、イソシアン酸基を有する脂肪族及び/又は環状族ポリオール化合物と、エチレンオキサイドユニットを有するエーテル化合物を反応させて得られるものである光学透明粘着シート。</td>
</tr>
<tr>
<td>出願 2016-560833 [2016/09/28]</td>
<td>市川 智仁</td>
<td>神代 東紀</td>
</tr>
<tr>
<td>公開 WO2017/104217 [2017/06/22]</td>
<td></td>
<td>(名称) 損壊防止剤の製造方法、及び、損壊防止剤</td>
</tr>
<tr>
<td>登録 6085729 [2017/03/03]</td>
<td></td>
<td>(要旨) 成形品の内面を薄くしても表面の膨れや曲げの発生を抑制することがで</td>
</tr>
<tr>
<td></td>
<td></td>
<td>き、材料の使用量を増大させずに耐熱性に優れた損壊防止剤を製造で</td>
</tr>
<tr>
<td></td>
<td></td>
<td>きる損壊防止剤の製造方法を提供する。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>超薄壁体又は、化学発泡剤を含む溶融樹脂を射出成形して、可動</td>
</tr>
<tr>
<td></td>
<td></td>
<td>部を有する金型内のキャビティに充填する工程と、上記キャビティに</td>
</tr>
<tr>
<td></td>
<td></td>
<td>充填された上記溶融樹脂が硬化し終わる前に、上記可動部を移動させ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>て上記キャビティの容積を拡大させる工程とを有し、上記金型は、樹</td>
</tr>
<tr>
<td></td>
<td></td>
<td>脂注入口から上記キャビティの未満に向けた方向に沿って、上記キャ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ビティの間隔が狭い第1の接続部分と上記キャビティの間隔が狭い第</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2の接続部分とに交互に配置される損壊防止剤の製造方法。</td>
</tr>
<tr>
<td>出願 2016-564279 [2016/10/18]</td>
<td>田村 幸喜</td>
<td>若崎 成彰</td>
</tr>
<tr>
<td>公開 WO2017/034805 [2017/08/04]</td>
<td></td>
<td>(名称) エラストマー部材、及び、工作機械用シール部材</td>
</tr>
<tr>
<td>登録 6197128 [2017/08/25]</td>
<td></td>
<td>(要旨) 不溶性耐切削油、水溶性切削油を用いた切削油（クーラント）に対し</td>
</tr>
<tr>
<td></td>
<td></td>
<td>て優れた耐久性を有し、工作機械高分子に高適度に使用することができる</td>
</tr>
<tr>
<td></td>
<td></td>
<td>エラストマー部材を提供する。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>硬化性ポリウレート組成物の硬化物からなり、前記硬化性ポリウ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>レート組成物は、ポリオール成分、イソシアネート成分及び発泡剤を</td>
</tr>
<tr>
<td></td>
<td></td>
<td>含有し、かつ、前記ポリオール成分がポリエチレンアドペートエス</td>
</tr>
<tr>
<td></td>
<td></td>
<td>テルポリオール（PEA）であり、HS－A種類が67以上であり、工作機</td>
</tr>
<tr>
<td></td>
<td></td>
<td>械に用いられることを特徴とするエラストマー部材。</td>
</tr>
</tbody>
</table>

BANDO TECHNICAL REPORT No.22/2018 42
<table>
<thead>
<tr>
<th>特許番号</th>
<th>発明者</th>
<th>発明の名称・要約</th>
</tr>
</thead>
</table>
（要旨）比較的低温度での接合によって高い接合強度を得られると共に、被接合
界面からの十分な広がりを維持しつつ、フィレットの形成を抑制する
接合用組成物を提供する。
無機粒子を主成分、有機成分を助成分とする接合用組成物であって、
昇温によって粘度低下が生じ、粘度低下の後に無機粒子同士が焼結す
ることを特徴とする接合用組成物。接合用組成物の略25℃における
粘度は、せん断速度100〜1において1〜50Pa・sであること、が記述
される。 |
（要旨）ベルトを効果的に冷却するとともに、加工が容易なベルト伝動装置を
提供する。
ベルト伝動装置は、前駆動ブリーミ及び後駆動ブリーミ、ベルトとも有
する。
前駆動ブリーミ及び後駆動ブリーミは、内部に中空部が形成された固定シ
ープと、可動シープとを有し、ブリーミが設けられた回転軸には、中
空部にそれぞれ通達する流入路及び流出路が内部に形成された引き関
係が形成される。 |
（要旨）工作機械の摩擦面と接するエッジ部が摩耗しにくく、長期間に渡
ってシール性能を維持することができる工作機械用シール部品を提供す
る。
抵抗部材と、工作機械の摩擦面と接するエッジ部を有する平板状の
弾性部材を有し、前記抵抗部材は、前記弾性部材にめても面の一部
と対向する支持面を有し、前記工作機械に、前記抵抗部材が、前記
工作機械の取付部と前記抵抗部材を支持面とで固定するよう取り付
けられ、前記抵抗部材は、前記工作機械に取り付けられた際前記取
付部と前記抵抗部材とで固定され、前記抵抗部材とで固定され、前記
エッジ部を含む。かつ、摩擦可能なリップ部と
を有することを特徴とする工作機械用シール部品。 |
（要旨）偏心の発生し得る駆動軸と駆動軸をを連接するカップリングにおい
て、トルク伝達（回転）方向には高剛性を実現しつつ、駆動軸および
駆動軸が偏心する初期段階においても低めの剛性を実現する。
ジョイント部の歯部に、一定の幅をもつ先端部と相対するジョイ
ント部に向かって前歯部の幅が狭くなるような光歯部を設けるこ
とで、駆動軸としての回転モーメントの伝達軸と駆動軸としてのウォーム
との偏心に伴う相対するジョイント部が偏心しても、光歯部とスプラ
イン溝の内壁が接触しないようにし、トルク伝達を妨げる偏心反力
の発生を抑える。それと同時に、トルク伝達方向にはスプライン溝と
均一幅部が直ぐに干渉するようにして、高いトルク伝達を実現す
る。 |
<table>
<thead>
<tr>
<th>特許番号</th>
<th>発明者</th>
<th>発明の名称・要約</th>
</tr>
</thead>
<tbody>
<tr>
<td>出願 2016-580644 [2016/11/14]</td>
<td>大西 淳</td>
<td>光学透明粘着シートの製造方法、積層体及び、チューブ時計発光表示装置</td>
</tr>
<tr>
<td>出願 2017-090674 [2017/06/01]</td>
<td>中根 聡一郎</td>
<td>素材の内部を変形可能な熱硬化性ポリウレタン樹脂を用いて、レーザー光が照射された光学透明粘着シートを提供する。</td>
</tr>
<tr>
<td>登録 6106851 [2017/06/30]</td>
<td>細田 祐希</td>
<td>光学透明粘着シート、光学透明粘着シートの製造方法、積層体及び、チューブ時計発光表示装置</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>特許番号</th>
<th>発明者</th>
<th>発明の名称・要約</th>
</tr>
</thead>
<tbody>
<tr>
<td>出願 2016-570905 [2016/04/26]</td>
<td>中山 漢平</td>
<td>光学透明粘着シートの製造方法</td>
</tr>
<tr>
<td>出願 2016/174863 [2016/11/03]</td>
<td>奥野 茂樹</td>
<td>光学透明粘着シートの製造方法、及び、ガラス製発光表示装置</td>
</tr>
<tr>
<td>登録 6123017 [2017/04/03]</td>
<td>横田 正吾</td>
<td>光学透明粘着シート、光学透明粘着シートの製造方法、及び、ガラス製発光表示装置</td>
</tr>
<tr>
<td>出願 2017-504205 [2017/01/19]</td>
<td>中根 聡一郎</td>
<td>光学透明粘着シート、光学透明粘着シートの製造方法、及び、ガラス製発光表示装置</td>
</tr>
<tr>
<td>出願 2017-135043 [2017/08/10]</td>
<td>細田 祐希</td>
<td>光学透明粘着シート、光学透明粘着シートの製造方法、及び、ガラス製発光表示装置</td>
</tr>
<tr>
<td>登録 6208915 [2017/09/15]</td>
<td>大西 淳</td>
<td>光学透明粘着シート、光学透明粘着シートの製造方法、及び、ガラス製発光表示装置</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>特許番号</th>
<th>発明者</th>
<th>発明の名称・要約</th>
</tr>
</thead>
<tbody>
<tr>
<td>出願 2017-506948 [2017/01/31]</td>
<td>向 史博</td>
<td>高温環境下でのガラス製粘着シートの製造方法</td>
</tr>
<tr>
<td>出願 2017-135237 [2017/08/10]</td>
<td>山田 尚彦</td>
<td>光学透明粘着シート、光学透明粘着シートの製造方法、及び、ガラス製発光表示装置</td>
</tr>
<tr>
<td>登録 6200119 [2017/09/01]</td>
<td>内藤 隆</td>
<td>光学透明粘着シート、光学透明粘着シートの製造方法、及び、ガラス製発光表示装置</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>特許番号</th>
<th>発明者</th>
<th>発明の名称・要約</th>
</tr>
</thead>
<tbody>
<tr>
<td>出願 2017-508107 [2017/02/03]</td>
<td>吉田 博文</td>
<td>光学透明粘着樹脂部材接着剤及び熱可塑性樹脂部材接着剤の接着方法</td>
</tr>
<tr>
<td>出願 2017-199480 [2017/11/23]</td>
<td>浦田 康彦</td>
<td>光学透明粘着樹脂部材接着剤、及び、熱可塑性樹脂部材接着剤の接着方法</td>
</tr>
<tr>
<td>登録 6116786 [2017/03/31]</td>
<td>宮田 幸一</td>
<td>光学透明粘着樹脂部材接着剤、及び、熱可塑性樹脂部材接着剤の接着方法</td>
</tr>
</tbody>
</table>

BANDO TECHNICAL REPORT No.22/2018
<table>
<thead>
<tr>
<th>特許番号</th>
<th>発明者</th>
<th>発明の名称・要約</th>
</tr>
</thead>
<tbody>
<tr>
<td>出願 2017-513819 [2017/02/27]</td>
<td>宮原 正樹</td>
<td>鈴原 久</td>
</tr>
<tr>
<td>公開 WO2017/169412 [2017/10/05]</td>
<td>宮原 正樹</td>
<td>鈴原 久</td>
</tr>
<tr>
<td>登録 6192876 [2017/08/18]</td>
<td>田中 信</td>
<td>鈴原 久</td>
</tr>
<tr>
<td>出願 2017-516787 [2017/03/23]</td>
<td>井上 洋介</td>
<td>國定 李志</td>
</tr>
<tr>
<td>発明</td>
<td>鈴原 久</td>
<td>軸方向に沿った突起の成形体を、複数の圧縮成形板に軸方向に</td>
</tr>
<tr>
<td>登録 6158465 [2017/06/16]</td>
<td>井上 洋介</td>
<td>國定 李志</td>
</tr>
<tr>
<td>出願 2017-522216 [2017/01/06]</td>
<td>春重 直久</td>
<td>宮田 光一</td>
</tr>
<tr>
<td>公開 WO2017/168919 [2017/09/14]</td>
<td>春重 直久</td>
<td>宮田 光一</td>
</tr>
<tr>
<td>登録 6159007 [2017/06/16]</td>
<td>春重 直久</td>
<td>宮田 光一</td>
</tr>
<tr>
<td>出願 2017-522211 [2017/01/05]</td>
<td>春重 直久</td>
<td>宮田 光一</td>
</tr>
<tr>
<td>登録 6154092 [2017/06/09]</td>
<td>春重 直久</td>
<td>宮田 光一</td>
</tr>
<tr>
<td>出願 2017-525651 [2017/01/06]</td>
<td>江野 光一</td>
<td>坂下 友作</td>
</tr>
<tr>
<td>公開 WO2017/168920 [2017/10/05]</td>
<td>江野 光一</td>
<td>坂下 友作</td>
</tr>
<tr>
<td>登録 6214838 [2017/09/29]</td>
<td>江野 光一</td>
<td>坂下 友作</td>
</tr>
</tbody>
</table>

BANDO TECHNICAL REPORT No.22/2018
（日本実用新案）

<table>
<thead>
<tr>
<th>実案番号</th>
<th>考案者</th>
<th>考案の名称・要約</th>
</tr>
</thead>
<tbody>
<tr>
<td>出願 2016-005672 [2016/11/28]</td>
<td>大内 秀大</td>
<td>（名称）腹圧変動量測定器</td>
</tr>
<tr>
<td>登録 3208866 [2017/02/01]</td>
<td></td>
<td>（要約）被検体の腹圧変動量をその生活を通じて簡易かつ客観的に測定できる腹圧変動量測定器を提供する。</td>
</tr>
</tbody>
</table>

腹圧変動量測定器は、伸縮性帯状体と、連結部と、ストレッチセンサと、データ通信装置を備える。伸縮性帯状体は、被検体の腹囲りに装着されるベルトから取り外されたバックルに一端部分が接合され、長手方向に伸縮する。連結部は、伸縮性帯状体の接続部分が取り付けられ、バックルが取り外されたベルトの帯状体と伸縮性帯状体を長手方向に連結する。ストレッチセンサは、伸縮性帯状体に設けられ、被検体の腹圧の変動に伴う伸縮性帯状体の繊維に応じて伸縮することによって、被検体の腹部変動量を検出する。データ通信装置は、ストレッチセンサによって検出された腹部変動量を測定データとして外部の情報端末へ送信する。
新製品紹介

固縛ベルト用張力計 LASHINGBITE® (ラッシングバイト)の紹介

（担当：産業資材事業部）

バンドー化学株式会社と大手物流会社である山九株式会社は、2015年9月に輸送貨物の固縛ベルト用張力計「LASHINGBITE®（ラッシングバイト）」を共同開発し、その後、両社でさらなる評価・検討を重ね、2017年4月から販売を開始しています。

1. 開発の背景・ねらい
近年、海上輸送物輸送などでは、輸送中の精密機械設備などのラッシング（固縛）ベルトの絞めによる荷崩れなどの物損事故が起こっています。このため、荷崩れ予防や、万が一、事故が発生した場合にも固縛作業はきっちりと実施していたなどの証拠が求められています。荷崩れなどの物損事故の原因は様々ですが、その一つが荷物の固縛時ににおける締め付け力の確認を全ての感覚で行っていくことでした。そのため、個人差やその時々によってバラつきが生じていましたが、当張力計（図1）の導入により、高い精度で固縛用ベルトの張力を数値管理でき、輸送物の荷崩れの原因の一つである張力不足を防ぎ、輸送の信頼性を高めることが可能になりました。

図1. 固縛ベルト用張力計 LASHINGBITE®

2. 製品の特長
1）固縛用ベルトの張力計がデジタル表記され、データ管理が可能（単位：N）。
データ保存：測定日時、ベルトタイプ、目標値、測定値が保存可能（最大100件）。
データ出力：SDカードで、データ出力が可能（CSV形式）。
2）幅広い測定範囲、使用環境に対応しており、様々な作業現場で手軽に使用可能。
測定範囲：張力1,000N ～ 19,600N
使用環境：温度−10℃ ～ 60℃、湿度80％以下
測定対象：スチールバンド、ワイヤーロープを除く固縛ベルト（幅～75mm、厚み0.7mm ～ 3.5mm）に対応。
※但し、当社が測定可能であることを確認したものに限定。
合否判定：事前に目標値を入力すると、目標値に達した際に合図（音）が出る。
製品仕様：外径寸法（H194mm × W85mm × D82mm）、重量（1.24kg）、電源（単3形2本）、生活防水（IPX4相当）。
製品紹介動画：https://youtu.be/97rMX-Ln8F4

3. まとめ
これまで、作業者の感覚に頼る部分が多くかった固縛作業の一つの目安となる存在がこのLASHINGBITE®（ラッシングバイト）であり、物流の貨物輸送で、固縛の緩みが少なくなったなど、輸送品質の向上に寄与する製品になっていくことが期待される。
環境モニタリングに貢献する異物検査ツール「BANDO DEC-20™」の紹介

（担当：高機能エラストマー製品事業部）

バンドー化学株式会社（本社：兵庫県神戸市）は、クリーンルーム（準クリーンルームを含む）等で問題となっている、落下塵の可視化を実現した異物検査ツール「BANDO DEC-20™」を開発し、2018年1月から販売を開始しています。

1. 開発の背景・ねらい
近年、電子部品の高密度化、高性能化に伴い、製造現場ではクリーンルームを設置する等、クリーン化対策が進んでいますが、クリーンルームでは、空気中の浮遊埃が所定の清浄度レベル以下になるようクラス管理されていますが、落下塵と呼ばれる堆積した異物の問題視されております。この落下塵は、作業者が動作することで舞い上がったり、製品に付着する等、製品不良の要因の１つとなっています。
当社は、この落下塵に着目して「作業者が簡単に、異物を検出できること」を設計コンセプトとした簡易ツールとして、画像ソフト等を併用した「BANDO DEC-20™」を開発いたしました（図1）。

図1. 製品本体（右）と消耗品（左）

2. 製品の特長
1）製造現場でPCに接続するだけで、環境モニタリングの対象となる、可視で確認することが困難な20μmレベルの異物（皮膚・髪の毛・繊維・砂塵等）の可視化を実現しています（図2）。
2）画像ソフトOPEN CV（Open Source Computer Vision Library）と組み合わせることで、異物の数値と位置情報の定量化を実現しています。
3）軽量・コンパクト設計を実現しています。
外径寸法（H172mm × W260mm × D132mm）、重量（950g）、電源（A C100V）
製品紹介動画：https://youtu.be/8j-PJ0BmSu

図2. 異物観察のイメージ

※ 評価出願中（特開2016-45039）

3. まとめ
製造現場では、より合理的かつ経済的な落下塵の可視化が求められており、本製品は、電子部品業界だけでなく、同様の悩みを抱える食品業界等の様々な産業分野に貢献できると考えています。
TOPICS (2017.1 ～ 2017.12)

1月
- 「第3回ウェアラブルEXPO」に出展（東京ビッグサイト）

3月
- 難燃耐熱コンベヤベルト「FR7700」を販売開始

5月
- 株式の立会外分売の実施、終了

6月
- 「2017国際食品工業展（FOOMA JAPAN2017）」に出展（東京ビッグサイト）
- 第21回 機械要素技術展（M-Tech）」に出展（東京ビッグサイト）

8月
- 初摺り機に使用する特殊熱硬化ウレタン製もみすりロール「エイローボーイ®」を販売開始

11月
- 平成29年度「ひょうご仕事と生活のバランス企業表彰」に選定

12月
- SEMICON Japan 2017」に出展（東京ビッグサイト）
- 環境モニタリングに貢献する異物検査ツール「BANDO DEC-20™」を開発
- 平成29年度「スポーツエールカンパニー」に認定

2月
- 経済産業省・東京証券取引所主催「健康経営銘柄2017」に選定

4月
- 創立111周年記念式典を実施
- バイオマス発電プラント向けコンベヤベルト「BANDO FR-BIOS®（バイオス）」を販売開始
- 「第8回高機能フィルム展」に出展（東京ビッグサイト）

9月
- 輸送荷物の締結ベルト用張力計「LASHINGBITE®」を販売開始

10月
- 「第44回国際福祉機器展 H.C.R.2017」に出展（東京ビッグサイト）

12月
- 「SID Vehicle Display Detroit」に出展
- 「バンドーユーグループ健康宣言」を制定
TOPICS（2017.1 ～ 2017.12）

2017.4 輸送貨物の固結ベルト用張力計「LASHINGBITE®」を販売開始
近年、物流業界では、トラック輸送や鉄道輸送、海上コンテナ輸送等、輸送環境の多様化に伴い、輸送中の振動や衝撃による荷崩れ、物損事故が問題となっています。荷崩れ、物損事故の原因は様々ですが、その一つが輸送貨物の固結時における締め付け力の確認を全て人の感覚で行っていることでした。そのため、個人差などによる締め付け力によるバラつきが生じていましたが、当張力計は、高い精度で固結用ベルトの張力を数値管理でき、輸送貨物の荷崩れの原因の一つである張力不足を防ぎ、輸送の信頼性を高めることが可能になりました。

2017.6 第21回 機械要素技術展「(M-Tech)」に出展
「省エネ・高機能・問題解決」をキーワードとして、工作機械の摺動部に使用するシール材「ワイバーエンジEX®」、次世代の平ベルト駆動システム「HFD®システム」、国内初となる高弾性アラミド心線を採用した結合型緩衝ベルト「バーツアーズアラミドコンポ」などの開発製品の紹介やデモンストレーションを行いました。

2017.8 別摺り機に使用する特殊熱硬化ウレタン製みずさりロール「イエローポーイ®」を販売開始
「別（もみ）」を「別（は）」と「玄米」に分離する別摺り機での使用に最適な特殊熱硬化ウレタン製みずさりロール「イエローポーイ®」を販売開始しました。従来のゴムロールの重量は1個当たり約8kgあり、交換・入替作業の負担が大きいという課題がありますが、「イエローポーイ®」は長命かつ軽量であるため、その負担軽減が可能になりました。

2017.9 「SID Vehicle Display Detroit」に出展
ディスプレイのダイレクトボンディング®の際に、従来の光学用粘着剤シートでは困難なにもかかわらずポリウレタン系の超厚膜光学用透明粘着剤シート（OCA）の開発製品の紹介やデモンストレーションを行いました。
※1 ダイレクトボンディングとは、カーボガラスと液晶ディスプレイ等を光学用透明粘着剤シートで貼り合わせることにより、視認性に優れ、屋外用途でも信頼性の高いディスプレイを実現するプロセスです。
BANDO TECHNICAL REPORT No.22
バンドー テクニカルレポート

平成30年3月31日発行

編集 バンドー化学株式会社 R&Dセンター・総務部
発行 バンドー化学株式会社 総務部
〒650-0047 神戸市中央区港島南町4丁6番6号
TEL.078-304-2935 FAX.078-304-2984
URL www.bandogrp.com

無断転載を禁じます

バンドーグループは環境にやさしい事業活動を推進しています