# **Long Synchronous Belt**

# 1. Long Synchronous Belt (Rubber) Product Introduction

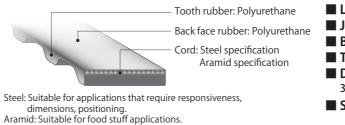
This belt allows synchronous power transmission and synchronous conveyance over long spans. It is lighter and more quiet than chains and requires no lubrication.

Please utilize it in place of chains, flat belts, and conveyor belts for factory automation.

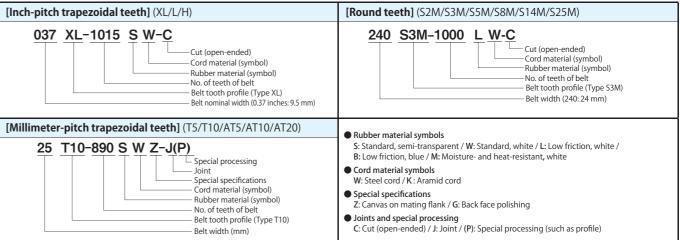
## **Structure and Tooth Profile Dimensions**

| Belt type     |       | Long S | TS Belt                                                                                                                                   |                                            |                                                                                                            | Long Synchr | onous Belt |                |  |  |
|---------------|-------|--------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------|------------|----------------|--|--|
| Structure     | J.    |        | ubber (Chloroprene)<br>Leing fabric (Nylon)<br>Back face rubber (Chloropr<br>Cord (Glass cord)<br>b & & & & & & & & & & & & & & & & & & & | ene)                                       | Tooth rubber (Chloroprene)<br>Facing fabric (Nylon)<br>Back face rubber (Chloroprene)<br>Cord (Glass cord) |             |            |                |  |  |
|               |       |        |                                                                                                                                           | nsions in ( )<br>mless type.<br>(Unit: mm) | The dimensions in ( ) are of seamless type.                                                                |             |            |                |  |  |
| Tooth profile | Type  | Р      | hı                                                                                                                                        | h2                                         | Type                                                                                                       | Р           | hı         | h <sub>2</sub> |  |  |
| dimensions    | S2M   | 2.0    | 0.76                                                                                                                                      | 1.31                                       | MXL                                                                                                        | 2.032       | 0.51       | 1.10           |  |  |
|               | S3M   | 3.0    | 1.14                                                                                                                                      | 2.10                                       | XL                                                                                                         | 5.080       | 1.25       | 2.25           |  |  |
|               | S4.5M | 4.5    | 1.71                                                                                                                                      | 2.70                                       | L                                                                                                          | 9.525       | 1.90       | 3.50           |  |  |
|               | S5M   | 5.0    | 1.91                                                                                                                                      | 3.61                                       | н                                                                                                          | 12.700      | 2.30       | 4.30(5.30)     |  |  |
|               |       | 0.0    | 3.05                                                                                                                                      | 5.30(6.05)                                 | XH                                                                                                         | 22.225      | 6.30       |                |  |  |
|               | S8M   | 8.0    | 5.05                                                                                                                                      | 5.50(0.05)                                 |                                                                                                            | 22.225      | 0.50       | 11.3(12.3)     |  |  |

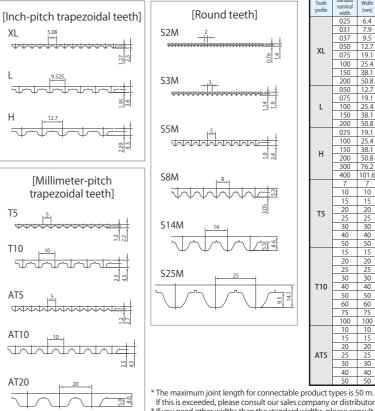
## Type / Features / Standard Sizes / Indications


| Туре          |                                                                                                                                                                                                                                                                                                                    | Seamless (no                                                                                                                                                                                                                                                                                                                  | joint)               | Open-ended (band form) |                   |    |    |           |           |                                      |               |                |                   |     |     |       |      |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------|-------------------|----|----|-----------|-----------|--------------------------------------|---------------|----------------|-------------------|-----|-----|-------|------|
| Features      | with the<br>The effe<br>Special                                                                                                                                                                                                                                                                                    | <ul> <li>The absence of a joint allows power transmission and conveyance with the same performance as that of standard synchronous belts.</li> <li>The effective length can be freely made in units of tooth.</li> <li>Special specifications (such as back face design and white color) can also be manufactured.</li> </ul> |                      |                        |                   |    | s. |           |           |                                      |               |                |                   |     |     |       |      |
|               | Туре                                                                                                                                                                                                                                                                                                               | Standard nominal width                                                                                                                                                                                                                                                                                                        | Manufacturable range | Nominal width          | 019               | 02 | 25 | 031       | 037       | 05                                   | 0 0           | 075            | 100               | 150 | ) 2 | 00    | 300  |
|               | н                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                               | 4.7~30 (m)           | Width (mm)             | 4.8<br>41         | 6  |    | 7.9<br>24 | 9.5<br>41 | 12.<br>30                            |               | 9.1            | 25.4              | 38. | 1 5 | 0.8   | 76.2 |
|               |                                                                                                                                                                                                                                                                                                                    | 100, 200, 400                                                                                                                                                                                                                                                                                                                 |                      | XL                     |                   | 5  | 4  | 43        | 36        | 26                                   | 5             | 34             |                   |     |     |       |      |
|               | хн                                                                                                                                                                                                                                                                                                                 | 600, 800, 1000                                                                                                                                                                                                                                                                                                                |                      | L                      |                   |    |    |           |           | 49                                   | 9             | 31             | 46                |     |     |       |      |
|               |                                                                                                                                                                                                                                                                                                                    | (inches $	imes$ 100)                                                                                                                                                                                                                                                                                                          |                      | н                      |                   |    |    |           |           |                                      | 4             | 41             | 30                | 38  | 2   | 27    | 16   |
| Standard size | ххн                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                               |                      | Nominal width          | 50                | 60 | 70 | 80        | 100       | 140                                  | 150           | 200            | 250               | 300 | 400 | 500   | 600  |
|               |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                               |                      | Width (mm)             | 5                 | 6  | 7  | 8         | 10        | 14                                   | 15            | 20             | 25                | 30  | 40  | 50    | 60   |
|               | <b>S8M</b> 250, 50                                                                                                                                                                                                                                                                                                 | 250, 500, 1000                                                                                                                                                                                                                                                                                                                |                      | S2M                    | 43                | 36 | 30 | 53        |           |                                      |               |                |                   |     |     |       |      |
|               | 20101                                                                                                                                                                                                                                                                                                              | 1500, 2000, 2800                                                                                                                                                                                                                                                                                                              | 4.7~30 (m)           | S3M                    | 50                | 42 |    |           |           |                                      |               |                |                   |     |     |       |      |
|               |                                                                                                                                                                                                                                                                                                                    | (mm×10)                                                                                                                                                                                                                                                                                                                       |                      | S4.5M                  |                   | 45 |    |           | 40        | 28                                   |               |                |                   |     |     |       |      |
|               | S14M                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                               |                      | S5M                    |                   |    |    | 53        | 42        |                                      | 42            |                | -                 | 50  | 27  | 20    |      |
|               |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                               |                      | S8M                    |                   |    |    |           | 56        |                                      | 55            | 40             | 31                | 52  | 3/  | 28    | 22   |
| Indication    | - Synchronous Belt          200       XH       10000         Effective length (mm)       Belt type (Type XH)         Belt nominal width (2 inches: 50.8 mm)         - STS Belt         500       S14M         Provide       Effective length (mm)         Belt type (Type S14M)         Belt nominal width (50 mm) |                                                                                                                                                                                                                                                                                                                               |                      |                        | chro<br>0<br>Belt | 25 | 53 | <u>m</u>  | 1         | – Belt<br>– Belt<br>– Effe<br>– Belt | type<br>ctive | (Type<br>lengt | vidth (0<br>e XL) |     |     | 6.4 m | m)   |

Long Synchronous Belt **Product Introduction** 


# 2. Bancollan Long Synchronous Belt (Polyurethane)

This belt made of polyurethane allows synchronous power transmission and synchronous conveyance over long spans. It is suitable for food processing machines, clean power transmission, and conveyance. Various profiles can be fused on the back face of the belt to enhance the conveyance function.


## **Structure and Features**



### How to Understand Product Name



# **Tooth Profiles / Standard Sizes / Joints**



If you need other widths than the standard widths, please consult our sales company or distributor There is a limitation on use; please make an inquiry.

#### Little dust generation and excellent cleanliness

- Joint of any length possible
- Back face profile processing possible
- The steel cord specification has little belt elongation.

Direct conveyance of food stuffs possible (passed Notice No. 370 of the Ministry of Health and Welfare concerning food hygiene)

Synchronous power transmission over long spans possible

| dard                  | Width | Maximum          | Maximum |       | Minimum joint |  |  |
|-----------------------|-------|------------------|---------|-------|---------------|--|--|
| iinal<br>1th          | (mm)  | nominal<br>width | length  | Joint | length        |  |  |
| 25                    | 6.4   |                  |         |       |               |  |  |
| 31                    | 7.9   |                  |         |       |               |  |  |
| 37                    | 9.5   |                  |         |       |               |  |  |
| 50                    | 12.7  | 200              |         | ~     |               |  |  |
| 75                    | 19.1  | 200              | 50m     | 0     | 0.5m          |  |  |
| 00                    | 25.4  |                  |         |       |               |  |  |
| 0                     | 38.1  |                  |         |       |               |  |  |
| 00                    | 50.8  |                  |         |       |               |  |  |
| 50                    | 12.7  |                  |         |       |               |  |  |
| '5                    | 19.1  |                  |         |       |               |  |  |
| 0                     | 25.4  | 200              | 50m     | 0     | 0.5m          |  |  |
| 50                    | 38.1  |                  |         |       |               |  |  |
| 00                    | 50.8  |                  |         |       |               |  |  |
| 75                    | 19.1  |                  |         |       |               |  |  |
| 00                    | 25.4  |                  |         |       | 0.5m          |  |  |
| 0                     | 38.1  | 400              | 50m     | 0     | 0.5m          |  |  |
| 0                     | 50.8  | 400              | 2011    | 0     |               |  |  |
| 0                     | 76.2  |                  |         |       | 2m            |  |  |
| 0                     | 101.6 |                  |         |       | 2111          |  |  |
| 7                     | 7     |                  |         |       |               |  |  |
| 0                     | 10    |                  |         |       |               |  |  |
| 5                     | 15    |                  |         | 0     |               |  |  |
| 0                     | 20    | 50               | 50m     |       | 0.5m          |  |  |
| 5                     | 25    | 50               | 5011    |       | 0.5111        |  |  |
| 5<br>0<br>5<br>0<br>0 | 30    |                  |         |       |               |  |  |
|                       | 40    |                  |         |       |               |  |  |
| 0                     | 50    |                  |         |       |               |  |  |
| 5                     | 15    |                  |         |       |               |  |  |
| 5<br>0<br>5<br>0      | 20    |                  |         |       |               |  |  |
| 5                     | 25    |                  |         |       | 0.5m          |  |  |
|                       | 30    |                  |         | -     | 0.511         |  |  |
| 0                     | 40    | 100              | 50m     | 0     |               |  |  |
| 0                     | 50    |                  |         |       |               |  |  |
| 0                     | 60    |                  |         |       |               |  |  |
| 5                     | 75    |                  |         |       | 2m            |  |  |
| 00                    | 100   |                  |         |       |               |  |  |
| 0                     | 10    |                  |         |       |               |  |  |
| 5                     | 15    |                  |         |       |               |  |  |
| 0                     | 20    |                  |         | ~     |               |  |  |
| 5                     | 25    | 50               | 50m     | 0     | 0.5m          |  |  |
| 0                     | 30    |                  |         |       |               |  |  |
| 0                     | 40    |                  |         |       |               |  |  |
| 0                     | 50    |                  |         |       |               |  |  |

length 0.5m 100 AT10 50m 50 50 60 60 2m 100 100 25 25 50 50 100 50m × AT20 \_ 100 100 400 S2M 60m × 480 × S3M 60m \_ 500 0.5m S5M 50m 0.5m 1000 50m S8M 00 50 2m 
 000
 100

 000
 100

 000
 100
 S14M 1000 \$25M 20m

## Bancollan Long Synchronous Belt System Table

|               |             |                  | Rubber type |                 |                 |                                    |              |  |  |  |  |  |
|---------------|-------------|------------------|-------------|-----------------|-----------------|------------------------------------|--------------|--|--|--|--|--|
| Tooth profile | Cord type   | S: Standard      | W: Standard | L: Low friction | B: Low friction | M: Moisture- and<br>heat-resistant | Mating flank |  |  |  |  |  |
|               |             | Semi-transparent | White       | White           | Blue            | White                              |              |  |  |  |  |  |
| XL            | Steel cord  | 0                | 0           |                 |                 | 0                                  |              |  |  |  |  |  |
| XL            | Aramid cord | 0                |             |                 |                 |                                    |              |  |  |  |  |  |
|               | Steel cord  | 0                | 0           |                 |                 | 0                                  |              |  |  |  |  |  |
| L             | Aramid cord | 0                |             |                 |                 |                                    |              |  |  |  |  |  |
| н             | Steel cord  | 0                | $\bigcirc$  |                 |                 | 0                                  |              |  |  |  |  |  |
| п             | Aramid cord | 0                | $\bigcirc$  |                 |                 | 0                                  |              |  |  |  |  |  |
| T5 -          | Steel cord  | 0                | $\bigcirc$  |                 |                 | 0                                  | 0            |  |  |  |  |  |
| 15            | Aramid cord | 0                | $\bigcirc$  |                 |                 |                                    |              |  |  |  |  |  |
| T10 -         | Steel cord  | 0                | $\bigcirc$  |                 |                 | 0                                  | 0            |  |  |  |  |  |
| 110           | Aramid cord | 0                | $\bigcirc$  |                 |                 | 0                                  |              |  |  |  |  |  |
| AT5           | Steel cord  | 0                | $\bigcirc$  |                 |                 |                                    |              |  |  |  |  |  |
| AT10          | Steel cord  | 0                | $\bigcirc$  |                 |                 |                                    |              |  |  |  |  |  |
| AT20          | Steel cord  | 0                | $\bigcirc$  |                 |                 |                                    |              |  |  |  |  |  |
| S2M           | Steel cord  |                  |             | 0               |                 |                                    |              |  |  |  |  |  |
| S3M           | Steel cord  |                  |             | 0               |                 |                                    |              |  |  |  |  |  |
| S5M           | Steel cord  |                  | $\bigcirc$  |                 |                 |                                    |              |  |  |  |  |  |
| 10100         | Aramid cord |                  | $\bigcirc$  |                 |                 |                                    |              |  |  |  |  |  |
| S8M           | Steel cord  |                  | $\bigcirc$  |                 |                 |                                    |              |  |  |  |  |  |
| 201/1         | Aramid cord |                  | ○*          |                 |                 |                                    |              |  |  |  |  |  |
| S14M          | Steel cord  |                  |             | 0               |                 |                                    |              |  |  |  |  |  |
| S25M          | Steel cord  |                  |             | 0               |                 |                                    |              |  |  |  |  |  |
| 323111        | Aramid cord |                  |             |                 | O*              |                                    |              |  |  |  |  |  |

\* The  $\bigcirc$  mark indicates that it is manufacturable. \* Cord symbol Steel: W

Aramid: K

\* S14M and S25M are used for conveyance; please contact us for details.

# **About Pulleys**

#### - Synchronous belt pulley

| Type | Tooth profile      | Din   | nensions |            |
|------|--------------------|-------|----------|------------|
| Type | Tootri pione       | W     | Н        | Θ (degree) |
| XL   |                    | 1.27  | 1.40     | 50         |
| L    | θ                  | 3.10  | 2.13     | 40         |
| Н    | \$Z                | 4.24  | 2.59     | 40         |
| T5   | T                  | 1.50  | 1.70     | 50         |
| T10  |                    | 3.40  | 3.00     | 50         |
| AT5  | 8                  | 2.70  | 1.10     | 50         |
| AT10 | 9 <del>~ ~ ~</del> | 5.40  | 2.35     | 50         |
| AT20 |                    | 10.80 | 4.65     | 50         |

- No. of teeth of pulley applied to each belt type (minimum, maximum)

| Synchr                            | Synchronous belt pulley |      | XL   | L     | Н    | T5 | T10 | AT5 | AT10 | AT20 |  |
|-----------------------------------|-------------------------|------|------|-------|------|----|-----|-----|------|------|--|
| P                                 | Pitch (mm)              |      | 5.08 | 9.525 | 12.7 | 5  | 10  | 5   | 10   | 20   |  |
| Minimum No. of teeth<br>of pulley |                         | 900  | 10   | 12    | 14   | 12 | 14  |     |      | 18   |  |
|                                   | Revolution              | 1200 | 10   |       | 16   |    | 16  |     |      |      |  |
|                                   |                         | 1800 |      | 14    | 18   | 14 | 18  | 15  | 15   |      |  |
| pull                              |                         | 2360 | 12   | 16    | 20   |    |     |     |      |      |  |
| ). of<br>ley                      |                         | 3000 |      |       | 16   | 16 | 16  |     | 16   | 20   |  |
| tee                               | rpm                     | 3600 |      |       |      |    |     |     |      |      |  |
| th                                |                         | 4800 | 14   | 18    |      | 20 |     |     |      |      |  |
| Maximum No. of teeth<br>of pulley |                         | 30   | 40   | 40    | 69   | 69 | 80  | 80  | 50   |      |  |

indicates "not applicable."

Please use pulleys with the number of teeth equal to or larger than the minimum number of teeth of a pulley and equal to or smaller than the maximum number of teeth of a pulley.

S25M

STS pulley

Pitch (mm)

Revolution

rpm

Maximum No. of teeth

of pulley

num No. of 1 of pulley 870

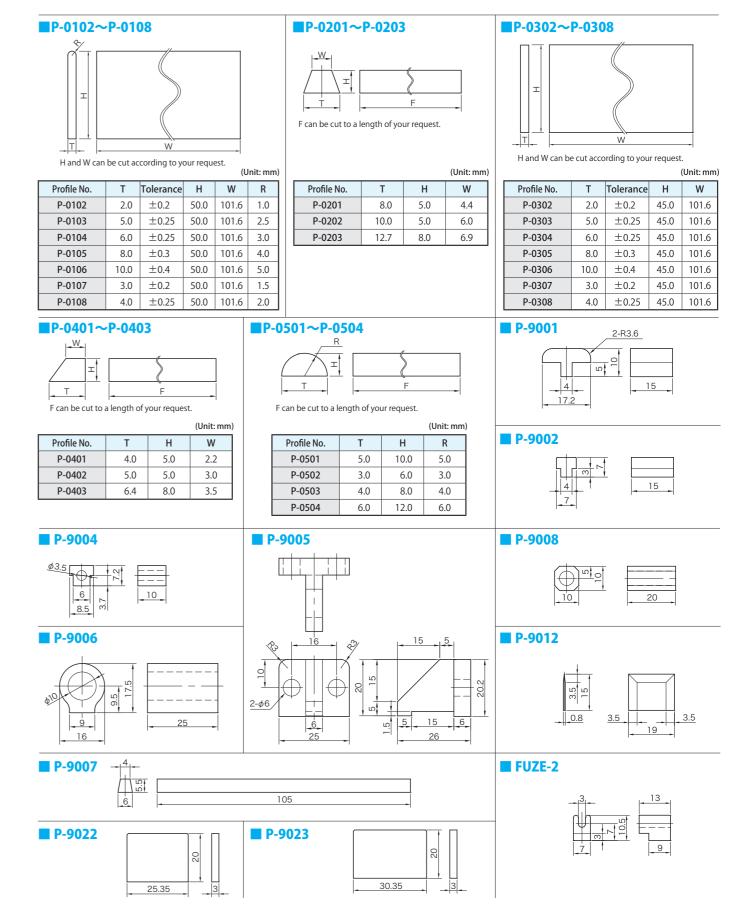
1160

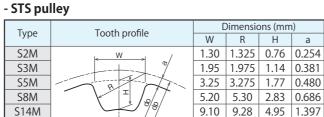
1750

2670

5000

An applicable minimum number of teeth of a pulley varies depending on the revolution.


For synchronous belt pulleys and STS pulleys, the classification of revolution differs due to the difference in pitch between inch and millimeter


Please use Types S2M and S3M at a belt speed of 10 m/s or less.

Long Synchronous Belt Belt Design

# Look-up Table of Profiles for Bancollan Long Synchronous Belts

For Bancollan Long Synchronous Belts, functions can be added by welding various profiles on belts. If you need other profiles than the standard profiles, please consult our sales company or distributor.





2 3

27 27

60

60

S2M S3M S5M S8M S14M S25M

16

20

24

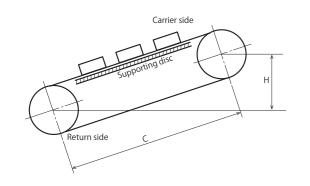
5 8 14 25

24

26

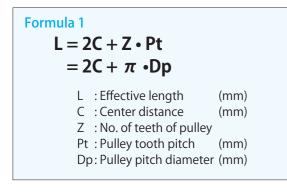
28

60 84 48


22 26 28

16.25 16.56 8.65 2.055

38


# 3. How to Design a Long Synchronous Belt (Rubber)

(1) How to design a belt when using it for conveyance



### Step 1 Calculating the effective length

(when the rotation ratio is 1:1)



#### Table 2 Belt unit mass (m)

| Rubber (seamless) Type   | Н      |       | XH    |      | XXH      |        | S8M   | S     | 14M   |
|--------------------------|--------|-------|-------|------|----------|--------|-------|-------|-------|
| Belt unit width (mm)     | 25.4   | 25.4  |       |      | 25.4     |        | 50    |       | 00    |
| Unit mass (kg/m)         | 0.16   | 57    | 0.346 |      | 0.413    |        | 0.326 |       | .053  |
| Rubber (open-ended) Type | MXL    | XL    | L     | Н    | S2M      | S3M    | S4.5M | S5M   | S8M   |
| Belt unit width (mm)     | 6.4    | 25.4  | 25.4  | 25.4 | 4.0      | 6.0    | 25.0  | 25.0  | 25.0  |
| Unit mass (kg/m)         | 0.0073 | 0.068 | 0.096 | 0.13 | 3 0.0064 | 0.0138 | 0.031 | 0.097 | 0.138 |

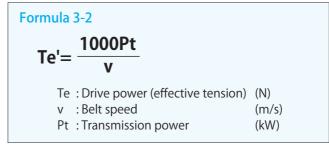
For information on how to design a Bancollan Long Synchronous Belt, refer to the separate "Bancollan Long Synchronous Belt Design Manual."

#### Step 2 Calculating the drive power (effective tension)

#### Formula 2 $Te'=9.8f (W_G+m) C \pm 9.8W_GH$ +: Ascending incline -: Descending incline Te': Drive power (effective tension) (N) f : Frictional factor of belt and support plate (Table 1) WG: Amount of material conveyed per meter of the effective length (kg/m) (Table 2) m : Belt unit mass C : Center distance (m) H : Difference of elevation (m)

#### Table 1 Frictional factors (f)

|                                |             | Bancollan (polyurethane) belt |                            |  |  |  |
|--------------------------------|-------------|-------------------------------|----------------------------|--|--|--|
| Support plate material         | Rubber belt | Standard specification        | Low-friction specification |  |  |  |
| lron (e.g. S45C)               | 0.3         | 0.5                           | 0.3                        |  |  |  |
| Aluminum                       | 0.3         | 0.4                           | 0.3                        |  |  |  |
| High-molecular<br>polyethylene | 0.2         | 0.3                           | 0.2                        |  |  |  |


# Long Synchronous Belt (Rubber) Belt Design

### Step 3 Correcting the effective tension (Te)

When using an idler pulley, correct the effective tension (Te').

| Formula 3-1<br>Te=Te' (Kq+Ki×N)                                                                                                 |                        |
|---------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Te : Effective tension after correction<br>Kq : Factor by frequency of use<br>Ki : Idler correction factor<br>N : No. of idlers | (Table 3)<br>(Table 4) |

If the conveyance conditions are unknown, use the following equation.



#### Table 3 Factor by frequency of use (Kq)

| 3∼5 hr/day | 8∼10 hr/day | 16~24 hr/day |  |  |  |
|------------|-------------|--------------|--|--|--|
| 1.0        | 1.2         | 1.3          |  |  |  |

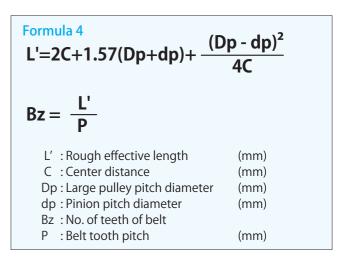
#### Table 4 Idler correction factor (Ki)

| Idler installation location                  | Ki  |
|----------------------------------------------|-----|
| No idlers                                    | 0.0 |
| Installed from the inside on the slack side  | 0.0 |
| Installed from the outside on the slack side | 0.1 |
| Installed from the inside on the tight side  | 0.1 |
| Installed from the outside on the tight side | 0.2 |

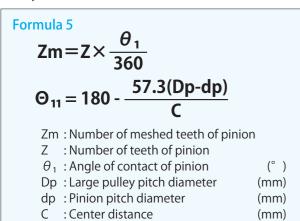
#### Table 5 Minimum number of teeth of pulleys

|        | Long Super-Torque Synchro | nous Belt |     |                       |                       |                       |                       |  |  |  |  |
|--------|---------------------------|-----------|-----|-----------------------|-----------------------|-----------------------|-----------------------|--|--|--|--|
|        | Pinion revolution (rpm)   |           |     | Belt                  | type                  |                       |                       |  |  |  |  |
|        | Finion revolution (ipin)  | S2M       | S3M | S4.5M                 | S5M                   | S8M                   | S14M                  |  |  |  |  |
|        | 870 or less               | 14        | 14  | 12                    | 14                    | 22                    | 34                    |  |  |  |  |
|        | Over 870 to 1160 or less  | 14        | 14  | 14                    | 16                    | 24                    | 38 (1120 rpm or less) |  |  |  |  |
|        | Over 1160 to 1750 or less | 16        | 16  | 16                    | 20                    | 26                    |                       |  |  |  |  |
|        | Over 1750 to 3500 or less | 18        | 18  | 18                    | 24                    | 28 (2670 rpm or less) |                       |  |  |  |  |
| т      | Over 3500 to 4500 or less | 20        | 20  | 18                    | 24                    |                       |                       |  |  |  |  |
| Rubber | Over 4500 to 5500 or less | 20        | 20  | 18                    | 24 (5000 rpm or less) |                       |                       |  |  |  |  |
| ğ      | Over 5500                 | 20        | 20  | 18                    |                       |                       |                       |  |  |  |  |
| er     | Long Synchronous Belt     |           |     |                       |                       |                       |                       |  |  |  |  |
|        | Pinion revolution (rpm)   | Belt type |     |                       |                       |                       |                       |  |  |  |  |
|        | Finion revolution (ipin)  | MXL       | XL  | L                     | Н                     | XH                    | XXH                   |  |  |  |  |
|        | 900 or less               | 12        | 10  | 12                    | 14                    | 22                    | 22 (850 rpm or less)  |  |  |  |  |
|        | Over 900 to 1200 or less  | 12        | 10  | 12                    | 16                    | 24 (1120 rpm or less) |                       |  |  |  |  |
|        | Over 1200 to 1800 or less | 14        | 12  | 14                    | 18                    |                       |                       |  |  |  |  |
|        | Over 1800 to 3600 or less | 16        | 12  | 16                    | 20 (2360 rpm or less) |                       |                       |  |  |  |  |
|        | Over 3600 to 4800 or less | 18        | 15  | 18 (3490 rpm or less) |                       |                       |                       |  |  |  |  |

\* Please use Types S2M and S3M with a minimum number of teeth of a pulley of 27 or more and at a belt speed of 10 m/s or less as they have higher responsiveness than that of previous belts.


### Step 4 Selecting a belt type and width

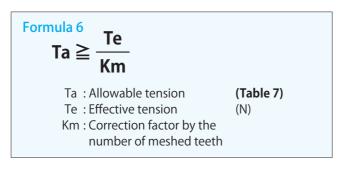
#### 4-1) Selecting the number of teeth of a pulley


For relations among the number of teeth of pulleys, pulley diameter, and pitch diameter, refer to the pulley section for Synchronous Belts and Super-Torque Synchronous Belts. (**→P.83~99**)

• Check of the minimum number of teeth of a pulley Generally, when a pulley with a small diameter is used, the flex fatigue of the belt increases, reducing the belt service life. Hence, please use a pulley with a larger number of teeth than the ones shown in (Table 5) at least.

4-2) Selecting the number of teeth (length) of a belt (Bz)




4-3) Correction by the number of meshed teeth (Zm) From Formula 5, calculate the number of meshed teeth of the pinion, and from (Table 6), obtain the correction factor by the number of meshed teeth Km.



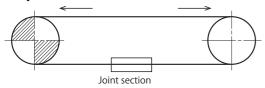
# Table 6 Correction factor by the number of meshed teeth Km

| Number of meshed teeth Zm | Km   |
|---------------------------|------|
| 6 or more                 | 1.00 |
| 5                         | 0.80 |
| 4                         | 0.60 |
| 3                         | 0.40 |
| 2                         | 0.20 |

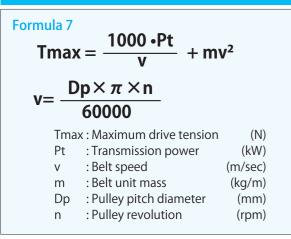
4-4) Calculation of belt width Select a belt width that satisfies Formula 6 from the allowable tension (Tables 7-1 to 2).



# Long Synchronous Belt (Rubber) Belt Design

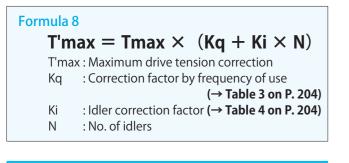

#### Table 7-1 Allowable belt tension (Ta)

| Rubber Long Synchronous (Seamless) (N)                                                                   |      |      |      |               |       |       |  |
|----------------------------------------------------------------------------------------------------------|------|------|------|---------------|-------|-------|--|
| Type     H     XH     XXH     Type     S8M       Belt width     Figure 1     S8M     S8M     S8M     S8M |      |      |      |               |       |       |  |
| 100(25.4mm)                                                                                              | 460  | 590  | 620  | 250(25.0mm)   | 810   | 1040  |  |
| 200(50.8mm)                                                                                              | 1020 | 1300 | 1370 | 500(50.0mm)   | 1800  | 2300  |  |
| 400(101.6mm)                                                                                             | 2070 | 2640 | 2780 | 1000(100.0mm) | 3650  | 4670  |  |
| 600(152.4mm)                                                                                             | 3180 | 4060 | 4270 | 1500(150.0mm) | 5540  | 7080  |  |
| 800(203.2mm)                                                                                             | 4250 | 5420 | 5710 | 2000(200.0mm) | 7420  | 9480  |  |
| 1000(254.0mm)                                                                                            | 5360 | 6830 | 7190 | 3000(300.0mm) | 11030 | 14100 |  |


#### Table 7-2 Allowable belt tension (Ta)

|                    | Rubber Long Synchronous (Open-Ended) |     |     |      |                    |       |     | (N)  |
|--------------------|--------------------------------------|-----|-----|------|--------------------|-------|-----|------|
| Type<br>Belt width | MXL                                  | XL  | L   | Н    | Type<br>Belt width | S4.5M | S5M | S8M  |
| 019 (4.8mm)        | 16                                   | _   | _   | _    | 60 (6.0mm)         | 50    | —   | —    |
| 025 (6.4mm)        | 22                                   | 25  | _   | _    | 80 (8.0mm)         | —     | 240 | _    |
| 031 (7.9mm)        | 28                                   | 35  | _   |      | 100(10.0mm)        | 90    | 310 | 340  |
| 037 (9.5mm)        | 35                                   | 45  |     |      | 140(14.0mm)        | 130   |     |      |
| 050(12.7mm)        | 48                                   | 70  | 95  |      | 150(15.0mm)        |       | 490 | 560  |
| 075(19.1mm)        | _                                    | 120 | 165 | 425  | 200(20.0mm)        |       | 680 | 750  |
| 100(25.4mm)        |                                      |     | 235 | 600  | 250(25.0mm)        |       | 850 | 950  |
| 150(38.1mm)        | _                                    |     |     | 900  | 300(30.0mm)        |       |     | 1150 |
| 200(50.8mm)        | _                                    |     | _   | 1250 | 400(40.0mm)        |       |     | 1550 |
| 300(76.2mm)        |                                      |     |     | 2000 | 500(50.0mm)        |       |     | 1960 |
|                    |                                      |     |     |      | 600(60.0mm)        |       |     | 2360 |

# (2) How to design a belt when using it for reciprocal motions




#### Step 1 Calculating the maximum drive tension



### Step 2 Correcting the maximum drive tension

When using an idler pulley, correct the maximum drive tension (Tmax) with Formula 8.



### Step 3 Selecting a belt type and width

#### 3-1) Selecting the number of teeth of a pulley

For relations among the number of teeth of pulleys, pulley diameter, and pitch diameter, refer to the pulley section for Synchronous Belts and Super-Torque Synchronous Belts. (→P.88~99)

#### 3-2) Selecting a belt width

When selecting a belt width, select one so that the T'•max obtained with Formula 8 forms T'•max < Ta from (Tables 7-1 to 2).

# (3) How to design a belt when there are sudden stops and sudden accelerations

Under conditions of sudden stop and sudden acceleration, an abnormal torque may be applied to the belt due to the inertial force of the machine; check with Formula 9 in advance, and if the width falls short, it needs to be corrected.

Calculate Te by substituting the Pdq obtained with Formula 9 as Pt of Formula 3-2 ( $\rightarrow$  P. 204) in Step 3 and select a belt width by following Step 4 ( $\rightarrow$  P. 204).

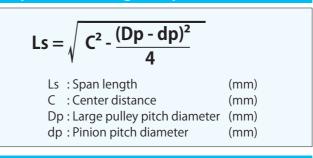
Also, compare belt widths in the same way without considering sudden stops and sudden accelerations and use the wider belt.

| Formula 9<br>$Trq = \frac{\Sigma GD^{2} \times (n_{1} - n_{2})}{38.2 \times t}$ | (N•m)                    |
|---------------------------------------------------------------------------------|--------------------------|
| $Ptq = \frac{n \times Trq}{9550}$                                               | (kW)                     |
| Pdq=Ptq×Kq                                                                      | (kW)                     |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                            | (N•m)<br>(kgf•m²)<br>(S) |

# Correction factor Kq by rotation at the time of a sudden stop or sudden acceleration

| •                   |       |       |       |        |       |
|---------------------|-------|-------|-------|--------|-------|
| revolutions/<br>day | 1     | 2     | 3~4   | 5~10   | 11~15 |
| Kq                  | 1.0   | 1.2   | 1.3   | 1.5    | 1.6   |
| revolutions/<br>day | 16~25 | 26~40 | 41~60 | 61~100 | 101~  |
| Kq                  | 1.7   | 1.8   | 1.9   | 2.0    | 2.1   |

# **Data Edition**


# Precautions for Designing and Using a Synchronous Belt

#### (1) How to appropriately tension a synchronous belt

An appropriate belt tension has no slack, and an excessive tension reduces the belt service life. If the tension is loose, a high shock load or a high starting torque may cause the belt to jump and be stranded on the pulley groove.

When numerically controlling the belt tension, follow the next procedure.

Step 1 Calculating the span



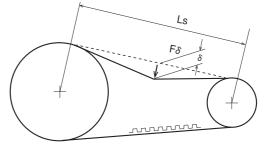
# Step 2 calculating the slack and tension load

1 Slack calculation

| δ= | $\delta = 0.016  \text{Ls}$   |              |  |  |  |
|----|-------------------------------|--------------|--|--|--|
| -  | : Deflection<br>: Span length | (mm)<br>(mm) |  |  |  |

Calculation of deflection load

| Fδ   | $=\frac{\mathrm{To}+(\mathrm{Ls}/\mathrm{Lp})\cdot}{16}$ | Y              |
|------|----------------------------------------------------------|----------------|
| Fδ   | : Deflection load                                        | (N)            |
| Ls   | : Span length                                            | (mm)           |
| Lp   | : Belt pitch length                                      | (mm)           |
| To•Y | : Constant (Table 1/Tak                                  | ole 2/Table 3) |


\* For the value of To, the deflection load is calculated by substituting the max and min in **Table 1** to **Table 3**. If there is a recommended value, perform the calculation with a recommended value.

Apply a tension so that the deflection load at this time falls within the range of F  $\delta$  that was calculated by substituting To max and To min. If you substituted a recommended value, apply a tension of calculated F  $\delta$ .

### Step 3 Adjusting the tension

Apply a deflection of  $\delta$  mm to the center of the span and apply a tension so that the deflection load at this time is F  $\delta$ .

[Note] If a shock load or the starting torque is high and the belt jumps and becomes stranded on the pulley groove, tension the belt to the maximum To.



#### (2) In the case of outside the range of tension meter measurement

When adjusting tension, the value may fall outside the range of measurement with a tension meter, such as when the belt is large (e.g., XH, XXH). In such a case, correct the equation for deflection load and change the value to the one that can be measured with a tension meter.

\*Bando tension meter Applicable range of deflection 2 to 62 mm Applicable range of deflection load 4.9 to 120 N (0.5 to 12 kgf)

Correction equation when the value is outside the range of measurement (Synchronous Belt / STS)

### $\Delta = 0.016 \bullet Ls \bullet A$

$$\mathsf{F}\,\delta = \frac{\mathsf{To} + (\mathsf{Ls}\,/\,\mathsf{Lp}) \cdot \mathsf{Y} \cdot \mathsf{A}^2}{16/\mathsf{A}}$$

 $\begin{array}{lll} A & : Correction rate (e.g. 1.5, 0.5, 0.3, 0.2) \\ \delta & : Deflection & (mm) \\ Ls & : Span length & (mm) \\ F\delta & : Deflection load & (N) \\ Y & : Constant \end{array}$ 

#### [Calculation example]

With STS, if as a result of 1200 S14M3150, the deflection  $\delta$  is 14.29 mm and the deflection load F  $\delta$  is 313.1 N, make the following correction.

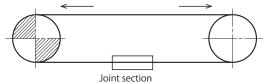
In this case, the span Ls should be set as 893.3 mm.

#### [Correction value]

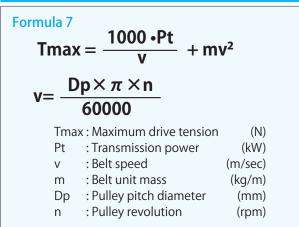
As the deflection load is 313.1N, in order to perform a measurement with a tension meter, it needs to be made 120 N or less.

Recommended To for an S14M belt with a belt width of 120 mm (1200): 4320 N

 $F \delta = \frac{4320 + 893.3/3150 \times 2430 \times (0.3)^2}{16/0.3} = 82.2$ 


 $\delta = 0.016 \times 893.3 \times 0.3 = 4.29$ 

Therefore, using 0.3 for the correction rate A, the result shown in the following table is obtained.


#### Setting example with the correction equation

|                            | Unit | Before correction | After correction |
|----------------------------|------|-------------------|------------------|
| Deflection $\delta$        | mm   | 14.29             | 4.29             |
| Deflection load F $\delta$ | Ν    | 294.2             | 82.2             |

(2) How to design a belt when using it for reciprocal motions



## Step 1 Calculating the maximum drive tension



#### Step 2 Correcting the maximum drive tension

When using an idler pulley, correct the maximum drive tension (Tmax) with Formula 8.

| Formula | 8                      |                           |
|---------|------------------------|---------------------------|
| T'n     | $hax = Tmax \times$    | $(Kq + Ki \times N)$      |
| T'ma    | ax : Maximum drive ter | nsion correction          |
| Kq      | : Correction factor b  | by frequency of use       |
|         |                        | (→ Table 3 on P. 204      |
| Ki      | : Idler correction fac | ctor (→ Table 4 on P. 204 |
| N       | : No. of idlers        |                           |

### Step 3 Selecting a belt type and width

#### 3-1) Selecting the number of teeth of a pulley

For relations among the number of teeth of pulleys, pulley diameter, and pitch diameter, refer to the pulley section for Synchronous Belts and Super-Torque Synchronous Belts. (→**P.88~99**)

#### 3-2) Selecting a belt width

When selecting a belt width, select one so that the T'-max obtained with Formula 8 forms T'•max < Ta from (Tables 7-1 to 2).

#### (3) How to design a belt when there are sudden stops and sudden accelerations

Under conditions of sudden stop and sudden acceleration, an abnormal torgue may be applied to the belt due to the inertial force of the machine; check with Formula 9 in advance, and if the width falls short, it needs to be corrected.

Calculate Te by substituting the Pdg obtained with Formula 9 as Pt of Formula 3-2 (→ P. 204) in Step 3 and select a belt width by following Step 4 ( $\rightarrow$  P. 204).

Also, compare belt widths in the same way without considering sudden stops and sudden accelerations and use the wider belt.

| Formula 9                                                                                                                                              |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| $Trq = \frac{\Sigma GD^2 \times (n_1 - n_2)}{38.2 \times t}$                                                                                           | (N•m)    |
| $Ptq = \frac{n \times Trq}{9550}$                                                                                                                      | (kW)     |
| Pdq=Ptq×Kq                                                                                                                                             | (kW)     |
| Trq : Rotational torque at the time of<br>a sudden stop or sudden acceleration<br>$\Sigma \subset \mathbb{D}^2$ . Fixehead effect (Sum total of CD2 on | (N•m)    |
| $\Sigma$ GD <sup>2</sup> : Flywheel effect (Sum total of GD2 on<br>the opposite side to the brake)                                                     | (kgf•m²) |

| n <sub>1</sub> · | $-n_2$ : Difference in revolution    |     |
|------------------|--------------------------------------|-----|
|                  | (opposite side to the brake)         |     |
| t                | : Time to change from $n_1$ to $n_2$ | (S) |

Pdg : Design power

: Correction factor (table below) Kq

#### Correction factor Kq by rotation at the time of a sudden stop or sudden acceleration

| •                   |       |       |       |        |       |
|---------------------|-------|-------|-------|--------|-------|
| revolutions/<br>day | 1     | 2     | 3~4   | 5~10   | 11~15 |
| Kq                  | 1.0   | 1.2   | 1.3   | 1.5    | 1.6   |
| revolutions/<br>day | 16~25 | 26~40 | 41~60 | 61~100 | 101~  |
| Kq                  | 1.7   | 1.8   | 1.9   | 2.0    | 2.1   |