Energy-Saving V-Belt

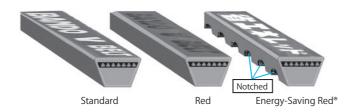
Product Introduction

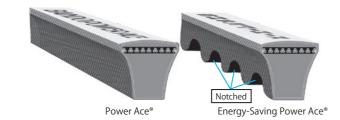
By reducing losses by belt bending stress, CO₂ emissions reduction and energy-saving effects can be expected.

Product Features

■ Energy-saving (power-saving) and CO₂ emissions reduction can be expected.

Although it depends on the conditions, a maximum of approximately 6% power can be reduced.

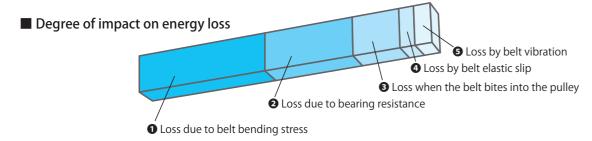

It can be used just by replacing the previous V-belt with Energy-Saving Red and replacing Power Ace with Energy-Saving Power Ace.


■ Long service life. *Based on our bench tests.

Due to the belt structure, internal heating is little, and the service life is long.

■ Cost reduction possible.

The cost can be reduced by the energy-saving (power-saving) effect and the reduction in the number of belts.



Why Can the Energy-Saving (Power-Saving) Effect Be Obtained?

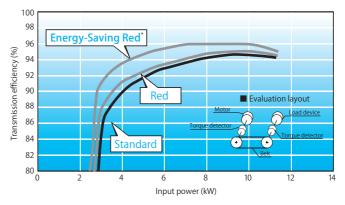
■ Energy losses by a belt (explanatory drawing)

Any power transmission device has losses (energy losses), and belt power transmission devices have the following energy losses.

The Energy-Saving V-Belt can be bent with a small force structurally; hence, the reduction of "losses by bending stress," whose energy loss ratio is high, can provide the energy-saving (power-saving) effect.

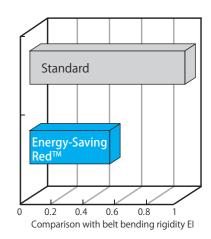
* The belt bending rigidity El is an index of the ease of bending. The lower the value, the more easily the belt can be bent.

Energy-Saving V-Belt / Energy-Saving Red / Energy-Saving Power Ace Product Introduction


1. Energy-Saving Red[™]

Belt type	Range of manufacturable sizes	
JIS Type A	20 to 360 inches	
JIS Type B	25 to 360 inches	
JIS Type C	35 to 360 inches	
JIS Type D	100 to 360 inches	

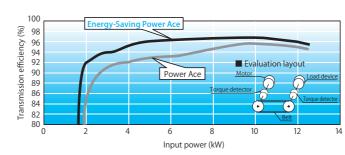
[Note] Effective length (mm) = $25.4 \times$ size (nominal designation)


■ Power transmission efficiency verification result

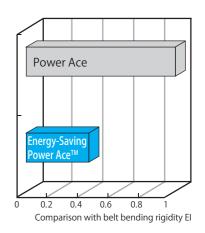
Input power and power transmission efficiency < Power Standard> Tension 50 kgf | B-50 | 3 belts | ϕ 118- ϕ 118

- The design transmission efficiency in the range of use of Energy-Saving Red* is 4% higher than that of the standard.

■ Comparison of belt bending rigidities <Belt Type B> (When the standard is 1)


2. Energy-Saving Power Ace[™]

Belt type	Range of manufacturable sizes
Type 3V	250~1400
Type 5V	500~3550
Type 8V	1000~3550


*Please specify the effective length with a nominal number.

■ Power transmission efficiency verification result

Input power and power transmission efficiency **Power Standard>** Tension 50 kgf | 5 V530 | 1 belts | ϕ 150- ϕ 150

■ Comparison of belt bending rigidities <Belt Type 5V> (When Power Ace is 1)

3. How to Design an Energy-Saving V-Belt

The transmission capacity of the Energy-Saving V-Belt is the same as that of the standard belt.

Refer to the design calculation page for the respective standard type belt.

Energy-Saving V-Belt	Reference product	Design calculation page	
Energy-Saving Power Ace	Power Ace	245~273	
Energy-Saving Red	V-Belt Red		

223

^{*}Effective length = Effective outside length (mm) = $25.4 \times Nominal No. / 10$