298

1. Product Introduction

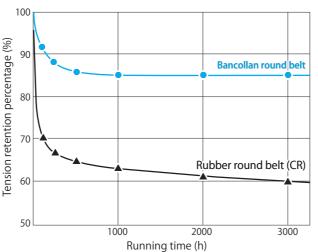
We offer the Bancord round belt (joint type) of a long cord type as a round belt. However, for recent office equipment and optical machinery, the needs for round belts that do not require joining and have excellent low-temperature characteristics have been increasing. The Bancollan round belt is a high-performance round belt that has undergone our original quality improvements and meets those needs.

Features

■ Easy belt installation

The belt can be easily installed by stretching it even when the center distance is fixed. Unlike a belt containing tension members, there is no need to slide pulleys or take time for tension adjustment; hence, it reduces the installation manhour.

Bancollan Round Belt


■ Stable tension

For belts without tension members, tension stability is especially important for belt performance. The Bancollan round belt has less changes in tension due to bending or permanent elongation than general rubber round belts or belts containing tension members, and can be used with almost no maintenance.

■ Smooth start even at low temperature

The specially compounded polyurethane rubber mostly prevents the belt from hardening or becoming set even at -20 °C. Therefore, it starts smoothly with no trouble due to the starting torque.

Fig. 1 Tension changes of the Bancollan round belt (Initial stretch rate 6%)

Example of use

Office equipment

Copiers

Fax machines

Electric typewriters

Registers

Ticket vending machines, bill exchange machines

Automatic ticket gates

Weighing-pricing machines

Automatic cash payment machines

Optical equipment/music equipment

Tape decks

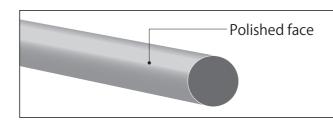
VTR

Others

Ultra-compact fans, air pollution measurement machines Vacuum cleaners, spectroscopic analysis devices

Stirring machines, desktop winding machines

Roller conveyors


Rotating lights

Polishing machines

Structure and Characteristics

For orders for Bancollan round belts, please specify the belt sizes shown in Table 1 if possible. However, as this belt is made to order, please contact us about delivery period, lots, and prices.

■ Belt appearance

■ Belt indication example

4 × 305

Effective length (mm)

Cross-sectional diameter (mm)

Sizes are indicated in units of individual package.

■ Basic physical properties of the belt

Item	Material	#267WLS
	Hardness	72° (JIS)
S	specific gravity	1.26
Tensile stress	When stretched by 4% When stretched by 6% When stretched by 8%	35×10 ⁴ (Pa) 50×10 ⁴ (Pa) 64×10 ⁴ (Pa)
To	ensile strength	3000 or more (N/cm ²)
Elongatio	on at the time of break	600(%)

Dimensional Tolerance

■ Belt cross-sectional tolerance

				(Unit: mm)
Cross-sectional diameter	2	3	4	5
Tolerance	±0.10	±0.10	±0.15	±0.20

■ Effective length

(Unit: mm)

Effective length	Tolerance
100~200	±2.0
201~400	±3.0
401~500	±4.0

Belt Size

Table 1 Table of belt standard sizes

(Unit: mm)

φ2		φ3		(Unit: r			
φ				φ		φ	
Effective length	Effective center perimeter	Effective length	Effective center perimeter	Effective length	Effective center perimeter	Effective length	Effective center perimeter
104 107 100 112 115 120 125 130 134 135 140 145 147 152 158 160 163 167 170 180 183 190 194 196 200 213 227 239 244 250 273 290 330 444	110.2 113.4 106.0 118.7 121.9 127.2 132.5 137.8 142.0 143.1 148.4 153.7 155.8 161.1 167.5 169.6 172.8 177.0 180.2 190.8 194.0 201.4 205.6 207.8 212.0 225.8 240.6 253.3 258.6 265.0 289.4 307.4 349.8 470.6	107 108 113 115 120 128 132 138 140 145 150 165 170 172 175 180 182 190 193 200 201 204 213 223 230 236 240 250 260 270 275 282 285 290 294 308 314 318 330 347 356 359 363 376 387 390 395 400 410 430 441 450 460 460	113.4 114.5 119.8 121.9 127.2 135.7 139.9 146.3 148.4 153.7 159.0 162.2 164.3 169.6 174.9 180.2 182.3 185.5 190.8 192.9 201.4 204.6 212.0 213.1 216.2 2255.8 236.4 243.8 250.2 275.6 286.2 291.5 298.9 302.1 307.4 311.6 323.3 326.5 332.8 337.1 349.8 367.4 367.4 37.4 37.4 37.4 37.4 37.4 37.4 37.4 3	135 140 142 160 165 170 173 175 184 197 200 206 213 225 230 235 240 250 254 258 264 270 275 284 285 290 300 305 316 323 332 346 361 367 374 377 385 390 415 440 450	143.1 148.4 150.5 169.6 174.9 180.2 183.4 185.5 195.0 208.8 212.0 218.4 225.8 238.5 243.8 249.1 254.4 265.0 269.2 273.5 279.8 286.2 291.5 301.0 302.1 307.4 318.0 323.3 335.0 342.4 351.9 366.8 382.7 389.0 396.4 439.9 466.4 477.0	157 168 182 200 210 220 225 230 247 248 250 275 290 300 305 310 315 320 330 345 348 363 374 375 380 402 416 422 434 440 460	166.4 178.1 192.9 212.0 222.6 233.2 238.5 243.8 262.9 265.0 291.5 307.4 318.0 323.3 328.6 333.9 339.2 349.8 365.7 368.9 384.8 396.4 397.5 402.8 426.1 441.0 447.3 460.0 466.4 487.6

⁻ The effective length is the center perimeter with no stretch.

297

⁻ The effective center perimeter represents the center perimeter when the belt is stretched by 6%.

2. How to Design

Step 1. Determining conditions required for the design

- 1 Machine type
- 2 Transmission power, or rated power of the driving machine
- 3 Degree of load fluctuation
- 4 Daily operating hours
- ⑤ Speed ratio

Pinion revolution Revolution of large pulley

- **6** Temporary center distance
- 7 Pulley diameter restriction
- ® Operating environment (high temperature, low temperature, oil, water, dirt, acid, alkali)

Step 2. Calculating the design power

Correct the driven load and obtain the design power to be used.

$$Pd = Pt \times \left(\frac{Ko}{K\theta_1 \times Kt}\right)$$

Pd: Design power

Pt : Transmission power (driven load or motor rating)

Ko : Load correction factor

(Table 2) $K\theta_1$: Pinion contact angle correction factor (**Table 3**)

Kt : Correction factor by initial stretch rate (Table 4)

(W)

(W)

When the transmission power was given in torques, convert it into watts with the following equation.

$Pt = Tr \cdot n \times 1.047 \times 10^{-3}$

Pt: Transmission power (W)

Tr : Torque (N•cm)

n:Revolution

(rpm)

Table 2 Load correction factor (Ko)

Load characteristics	Factor Ko
When the maximum load is used	1.0
When a normal load is used	1.3
When the frequency of starting and stopping is high	1.5

Table 3 Pinion contact angle correction factors (K θ_1)

Equation for contact angle calculation	Θ ₁ = 180 - 57.3(Dp - dp) / C					
(Dp-dp)/C	0.0	0.4	0.6	0.8	1.0	1.4
θ ₁ (°)	180	157	145	133	120	91
Correction factor K θ_1	1.00	0.94	0.91	0.87	0.82	0.70

Table 4 Correction factors by initial stretch rate (Kt)

⊿T (%)	4	5	6	7	8
Correction factor Kt	0.8	0.9	1.0	1.1	1.2

The correction factors in **Table 3** and **Table 4** correct the basic power rating; however, for convenience, they are in the form of correcting the transmission power.

Step 3. Selecting a cross-sectional diameter

Select a cross-sectional diameter so that Pr ≥ Pd from the basic power rating Pr and the design power Pd in Tables 5 to 8 (\rightarrow

When Pr < Pd, increase the number of belts or increase the cross-sectional diameter.

Step 4. Selecting an effective length

With the following equation, obtain the effective center perimeter of the belt and set the belt with the effective center perimeter closest to it from **Table 1** (\rightarrow **P. 298**).

$$L' = 2C' + 1.57(Dp + dp) + \frac{(Dp - dp)^2}{4C}$$

L': Effective center perimeter of the belt (mm)

C': Center distance

Dp: Large pulley pitch diameter dp: Pinion pitch diameter

(mm)

(mm)

(%)

(mm)

Check the following points for the selected belt in accordance with the conditions.

(A) When the center distance is fixed

Check whether the initial stretch rate is between 4% and 8% with the following equation.

$4 \leq \Delta t \leq 8$

 Δt : Initial stretch rate 100(L'/L-1)

L': Effective center perimeter of the belt (mm)

L: Effective center perimeter of the standard belt (mm)

(B) When the center distance can be adjusted

Obtain the center distance with the following equation so that the initial stretch rate is 6%.

$$C = \frac{B + \sqrt{B^2 - 2(Dp - dp)^2}}{4}$$

$$B = L \times 1.06 - 1.57 (Dp + dp)$$

C: Center distance (mm)

L : Effective center perimeter of the standard belt (mm)

Dp: Large pulley pitch diameter (mm)

dp: Pinion pitch diameter

Table 5 Table of basic power ratings for ϕ 2

Bancollan Round Belt

Pinion revolution		Pinion pit	ch diame	eter (mm)	
(rpm)	16	18	20	24	28
250	0.2	0.2	0.2	0.3	0.3
500	0.3	0.4	0.4	0.5	0.6
750	0.5	0.6	0.7	0.8	0.9
1000	0.7	0.8	0.9	1.1	1.2
1250	0.9	1.0	1.1	1.3	1.5
1500	1.0	1.2	1.3	1.5	1.8
1750	1.2	1.3	1.5	1.8	2.1
2000	1.4	1.5	1.7	2.0	2.3
2500	1.7	1.9	2.1	2.5	2.9
3000	2.0	2.3	2.5	2.9	3.3
3500	2.3	2.6	2.9	3.3	3.8

Table 6 Table of basic power ratings for ϕ 3

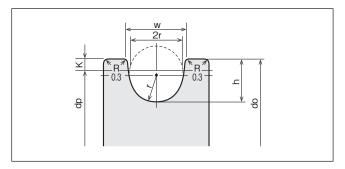
					(OTIIC. VV)
Pinion revolution		Pinion pit	tch diame	eter (mm)	
(rpm)	22	24	28	32	36
250	0.5	0.6	0.7	0.8	0.9
500	1.1	1.2	1.4	1.5	1.7
750	1.6	1.7	2.0	2.3	2.6
1000	2.1	2.3	2.7	3.1	3.4
1250	2.6	2.9	3.3	3.8	4.3
1500	3.2	3.4	4.0	4.5	5.1
1750	3.7	4.0	4.6	5.3	5.9
2000	4.2	4.5	5.3	5.9	6.6
2500	5.2	5.6	6.4	7.2	8.0
3000	6.1	6.6	7.5	8.4	9.2
3500	7.0	7.5	8.5	9.4	10.2

Table 7 Table of basic power ratings for ϕ 4

					(Unit: W)
Pinion revolution		Pinion pit	tch diame	eter (mm)	
(rpm)	28	32	36	40	45
250	1.2	1.4	1.5	1.7	1.9
500	2.4	2.7	3.1	3.4	3.8
750	3.6	4.1	4.6	5.1	5.7
1000	4.8	5.4	6.1	6.8	7.6
1250	5.9	6.8	7.6	8.4	9.4
1500	7.1	8.1	9.0	9.9	11.3
1750	8.2	9.3	10.4	11.4	12.7
2000	9.3	10.5	11.7	12.8	14.2
2500	11.4	12.8	14.2	15.4	16.8
3000	13.4	14.9	16.3	17.5	18.8
3500	15.2	16.7	18.1	19.3	24.7

Table 8 Table of basic power ratings for ϕ 5

					(Unit: W
Pinion revolution		Pinion pit	tch diame	eter (mm)	
(rpm)	36	40	45	50	60
250	2.4	2.7	3.0	3.4	4.0
500	4.8	5.4	6.0	6.7	8.0
750	7.2	8.0	9.0	9.9	11.8
1000	9.5	10.6	11.8	13.1	15.5
1250	11.8	13.1	14.6	16.1	19.0
1500	14.1	15.5	17.3	19.0	22.1
1750	16.2	17.8	19.8	21.6	24.9
2000	18.7	20.0	22.1	24.0	27.4
2500	22.1	24.0	26.2	28.1	30.8
3000	25.5	27.4	29.3	30.8	31.9
3500	28.2	29.9	31.3	31.7	30.7


When the effective lengths in Table 1 (P. 298) cannot be used, please contact us.

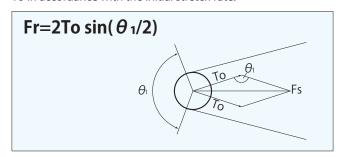
299

300

Pulleys for the Bancollan Round Belt

As pulleys for the Bancollan round belt, please use pulleys with the following dimensions.

Table of pulley groove dimensions


(Unit: mm)

Belt cross-sectional diameter	φ2	φ3	φ4	φ5
Groove top width W ±0.1	2.2	3.2	4.2	5.2
Groove depth h +0.1	1.3	2.0	2.7	3.3
Groove bottom r ±0.05	0.9	1.4	1.9	2.4
Difference between outside diameter and pitch diameter 2k	0.6	1.0	1.4	1.6
Minimum pulley pitch diameter	14	21	28	35

Avoid using V-grooved pulleys as they can cause partial abrasion of the belt.

Shaft Load of Bancollan Round Belt

Obtain the shaft load of the Bancollan round belt with the following equation from the following table of the initial tension To in accordance with the initial stretch rate.

Initial tension To

(Unit: N)

Belt cross-sectional diameter Stretch rate (%) \(\Delta \tau \)	φ2	φ3	φ4	φ5
4	1.08	2.45	4.31	6.76
5	1.27	3.53	6.57	10.3
6	1.57	4.31	7.64	11.8
7	1.76	4.80	8.62	14.4
8	1.96	5.19	9.60	16.5